Data-driven and Robust Distribution Steering

Panagiotis Tsiotras

School of Aerospace Engineering
Institute for Robotics and Intelligent Machines
Georgia Institute of Technology
(joint work with J. Pilipovsky)

CDC 2025 — Stochastic Planning and Control Workshop
Rio de Janeiro, December 9, 2025



Distribution Steering
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Distribution Steering

%P(ac,t) = —a%(f(:c,u)p(x,w) + %3_(02,0(9;,@)

Uncertainty Quantification
Uncertainty Mitigation




Many Applications

Pinpoint landing

SciTech 2019

Swarm

L-CSS 2025

Precision
package

| e

ChatGPT: Generate an
image of a GT astronaut
cat chasing a tennis ball.

LightSB Go With the Flow

Image-to-Image translation

Generative modeling

NeurlPS 2025

Embryonic

cell
modeling

PHATE2

® Day00-03
® Day 0609

Day 1215
Day 1821
® Day2427

PHATEL

NeurlPS 2025




Problem Formulation

Consider discrete-time stochastic linear system
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@ We wish the initial and final states to be distributed according to
zo ~ N(wo, Xo),  on ~N(un,XN)

where 19, 2o, un, Xy given, while minimizing the cost function
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Convex Programing Approach

@ Let the control
up = Ki(xg — i) + vk,

Dynamics of the state mean and covariance

fk+1 = Agpr + Brog,
Ypa1 = (A + Bp Kip) X (Ag + BkKk)T + DkD;fr

@ Use the standard transformation Uy £ K> Yz
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Lossless Convexification

Theorem (Rapakoulias & PT, 2023)

The following convex relaxation is lossless

N-1
‘ Jy = t ) +tr(ReY)
Zkr,rll]l;l?}’,‘. > kzzo r(QrXy) + tr(RyY)

~ 0

S Uit
177 T v k k
UnS; Uk = Vi QP = |:Uk Y/‘-]

AkaA;; — BkUkAZ — AkUkTB;Cr + Bk}}{B;ﬂr + Dk.DZ — 211 =0

F. Liu, G. Rapakoulias, and P. Tsiotras, “Optimal Covariance Steering for Discrete-Time Linear Stochastic Systems,” IEEE Transactions on Automatic Control, Vol. 70, No. 4, pp. 1558-2523, 2025



Chance Constraints
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| ossless CC relaxation

The optimal solution satisfies
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G. Rapakoulias, and P. Tsiotras, “Discrete-time Optimal Covariance Steering via Semidefinite Programming,” 62nd IEEE Conference on Decision and Control,
Marina Bay Sands, Singapore, Dec. 13-15, 2023, pp. 1802-1807



Chance Constraints
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G. Rapakoulias, and P. Tsiotras, “Discrete-time Optimal Covariance Steering via Semidefinite Programming,” 62nd IEEE Conference on Decision and Control,
Marina Bay Sands, Singapore, Dec. 13-15, 2023, pp. 1802-1807



Data-Driven CS

Indirect Design

Consider the discrete-time deterministic system | Eotmated |
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* Direct approach
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Willems' Fundamental Lemma, characterizes all
trajectories of an LTI system through the range X

. . 1,7

space of an input/output data matrix

Pilipovsky, J., and Tsiotras, P., “Data-Driven Covariance Steering Control Design,” 62nd IEEE Conference on Decision and Control, Marina Bay Sands, Singapore,
Dec. 13-15, 2023, pp. 2610-2615.



Data-Driven CS

Consider the discrete-time deterministic system

Tp41 = Awxy, + Buy,

X0 NN(M,E@), LN = If "“’N(“fﬂzf)

J(ug, ..., un_1) ::E{

Two potential approaches

* Indirect approach
* Direct approach

A, B: unknown

E r, Qrry + ul Riuy,

Willems' Fundamental Lemma, characterizes all
trajectories of an LTI system through the range
space of an input/output data matrix

Jan Willems (1939-2013)
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Pilipovsky, J., and Tsiotras, P., “Data-Driven Covariance Steering Control Design,” 62nd IEEE Conference on Decision and Control, Marina Bay Sands, Singapore,
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Assume control law
ur = Kp(xp — px) + vp

Assume persistency of excitation

Mean Steering

Alternative POV
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Assume control law
ur = Kp(xp — px) + vp

Assume persistency of excitation

Covariance Steering
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Assume control law
ur = Kp(xp — px) + vp

Assume persistency of excitation

Convex Optimization
Problem!



Assume control law

Covariance Steerin
ur = Ki(xr — pr) + vk &

Assume persistency of excitation N_1
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Noisy Data
Lt+1 = A.CUk; + Buk + &lﬁa 61{3 ~ N(Oa ZE)

X117 =AXor + BUpr + =07, =01 = €0, .-, Er—1]

Mean Propagation

T
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Covariance Propagation
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ML Noise Estimation

Let

U —
S = [X((])i:] — Xl,T: [B A]S+:

Since SSTS = S this yields the constraint
(X1r — Z07)Ir — S'S) =

MLE Problem
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ML Noise Estimation

Let

Uo,T —
S= |07 — xir=[B AS+=
[XO,T] L= | ] 0.7

Since SSTS = S this yields the constraint
(X117 —Z07)I1r — S'S)=0

MLE Solution

The solution to the MLE problem for the most probable noise
realization = 7 and disturbance covariance matrix ¢ is given by

=01 = X17(Ir — STS)

.1
Ve = =X1r(Ir - S18)XT




Estimation Error

Estimation Error

Assume Y, = 0 is known. For the MLE solution, we have the bound
PI‘{AEU?T € A} >1—-9

where,
A ={l|az ] < IZ%1Q%  (1-9)}

X2

n(n+m)

Bound is independent of horizon T if data is persistently exciting!

Pilipovsky, J., and Tsiotras, P., “DUST: A Framework for Data-Driven Density Steering,” 2025, arxiv.org/abs/2408.02777



Robust DD-DS

Robust DD Mean Steering

2020 59th IEEE Conference on Decision and Control (CDC)
Jeju Island, Republic of Korea, December 14-18, 2020

Robust Closed-loop Model Predictive Control
via System Level Synthesis

Shaoru Chen*, Han Wang*, Manfred Morari, Victor M. Preciado, Nikolai Matni

Abstract—In this paper, we consider the robust closed-loop
model predictive control (MPC) of a linear time-variant (LTV)
system with norm bounded disturbances and LTV model
uncertainty, wherein a series of constrained optimal control
problems (OCPs) are solved. Guaranteeing robust feasibility
of these OCPs is challenging due to disturbances perturbing
the predicted states, and model uncertainty, both of which
can render the closed-loop system unstable. As such, a trade-
off between the rical bility and conser

constraints, can be applied but tends to be overly con-
servative or even infeasible [7], as a single sequence of
inputs u is chosen for all possible disturbance realizations.
On the other hand, closed-loop MPC, which optimizes
over the control policies # = {mg(-),-+ ,7n_1(-)}, can
reduce the conservativeness of the solutions. However, the
policy space is infinite-dimensional and renders the online

of the solutions is often required. We use the System Level
Synthesis (SLS) framework to reformulate these constrained
OCPs over closed-loop system responses, and show that this
allows us to transparently account for norm bounded additive
disturbances and LTV model uncertainty by computing robust
state feedback policies. We further show that by exploiting the
underlying linear fractional structure of the resulting robust
OCPs, we can significantly reduce the c vativeness of ex-
isting SLS-based and tube-MP! y
while also improving computation
with numerical examples demonst
our methods.

I. INTRODUCTION

Model predictive control (M|
able success in solving multiva
problems across a wide range of application areas, h as
process control [1], power networks [2], and robot locomo-
tion [3]. In MPC, a control action is computed by solving
a finite-horizon constrained optimal control problem (OCP)
at each sampling time, and then applying the first control
action. The stability and performance of MPC depends on
the accuracy of the model being used, and indeed robustness
to both additive disturbances and model uncertainty must be
considered. Although MPC using a nominal model (i.e., one
ignoring uncertainty) offers some level of robustness [4], it
has been shown that the closed-loop system achieved by
nominal MPC can be destabilized by an arbitrarily small
disturbance [5]. As a result, robust MPC, which explicitly
deals with uncertainty, has received much attention [6].

When only additive disturbances are present, open-loop
robust MPC, which optimizes over a sequence of control
actions u = {ug, -+ ,un_1} subject to suitably robust

Han Wang is with the Department of Applied Mathematics and Com-
putational Science, University of Pennsylvania, Philadelphia, PA, 19104,
USA (e-mail: wanghan?2 @sas.upenn edu).

Shaoru Chen, Manfred Morari, Victor M. Preciado and Nikolai Matni
are with the Department of Elecirical and Sysiems Engincering, University
of Pennsylvania, Philadelphia, PA, 19104, USA (e-mail: [srchen, morari,
preciado, nmatni } @ scas.upenn.cdu).

* The first two authors contribuied equally to this paper.

OCPs i ble. The problem can be rendered tractable
by restricting the policies 7 to lie in a function class that
admits a finite-dimensional parameterization. For example,
policies of the form m;(x) = Kz + v; are considered in
[8-10], where K is a pre-stabilizing feedback gain K that
is fixed beforehand, thus reducing the decision variables
}. To reduce conservativeness,
w w(z) = Kz + v; can be
es K, and v;; however, the
. In [11], it was observed that
s 1o be over disturbance based
n i (w) = 024 Mijw; + v,
vex. In [12, 13], the authors
MPC) invariant set based ap-
tem trajectories within a tube
nis.

the resulting
an g

that robustly satisfy constrz

The more challenging problem considering model uncer-
tainty is tackled in [8, 13, 14]. When polytopic or struc-
tured feedback model uncertainty occurs, a linear matrix
inequality (LMI) based robust MPC method is proposed
in [14]. When both model uncertainty and additive distur-
bances are present, the method proposed in [13] designs
tubes containing all possible trajectories under polytopic
uncertainty assumptions. Alternative approaches based on
dynamic programming (DP) [15] are shown to obtain tight
solutions, but the computation quickly becomes intractable.
Adaptive robust MPC, which considers estimation of the
parametric uncertainty while implementing robust control,
is proposed in [16-18].

As described above, there is a rich body of work ad-
dressing the robust MPC problem, and it remains an active
area of research for which no definitive solution exists. Due
to the inherent intractability of the general robust MPC
problem subject to both additive disturbance and model
uncertainty, all of the aforementioned methods trade off
conservati for ional tractability in different
ways. The recently developed System Level Synthesis (SLS)
parameterization [19] provides an alternative approach to
tackling the robust MPC problem and exploring this tradeoff

978-1-7281-7447-1/20/$31.00 ©2020 |EEE 2152
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Robust Closed-loop Model Predictive Control
via System Level Synthesis

Rewrite perturbation LMI as

Shaoru Chen*, Han Wang*, Manfred Morari, Victor M. Preciado, Nikolai Matni

Abstract—In this paper, we consider the robust closed-loop
model predictive control (MPC) of a linear time-variant (LTV)
system with norm bounded disturbances and LTV model
uncertainty, wherein a series of constrained optimal control
problems (OCPs) are solved. Guaranteeing robust feasibility
of these OCPs is challenging due to disturbances perturbing
the predicted states, and model uncertainty, both of which
can render the closed-loop system unstable. As such, a trade-
off between the rical tractability and conser

constraints, can be applied but tends to be overly con-
servative or even infeasible [7], as a single sequence of
inputs u is chosen for all possible disturbance realizations.
On the other hand, closed-loop MPC, which optimizes
over the control policies # = {mg(-),-+ ,7n_1(-)}, can
reduce the conservativeness of the solutions. However, the
policy space is infinite-dimensional and renders the online

of the solutions is often required. We use the System Level
Synthesis (SLS) framework to reformulate these constrained
OCPs over closed-loop system responses, and show that this
allows us to transparently account for norm bounded additive
disturbances and LTV model uncertainty by computi
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process control [1], power networks [2], and robot locomo-
tion [3]. In MPC, a control action is computed by solving
a finite-horizon constrained optimal control problem (OCP)
at each sampling time, and then applying the first control
action. The stability and performance of MPC depends on
the accuracy of the model being used, and indeed robustness
to both additive disturbances and model uncertainty must be
considered. Although MPC using a nominal model (i.e., one
ignoring uncertainty) offers some level of robustness [4], it
has been shown that the closed-loop system achieved by
nominal MPC can be destabilized by an arbitrarily small
disturbance [5]. As a result, robust MPC, which explicitly
deals with uncertainty, has received much attention [6].

When only additive disturbances are present, open-loop
robust MPC, which optimizes over a sequence of control
actions u = {ug, -+ ,un_1} subject to suitably robust
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OCPs i ble. The problem can be rendered tractable
by restricting the policies 7 to lie in a function class that
admits a finite-dimensional parameterization. For example,
policies of the form m;(x) = Kz + v; are considered in
[8-10], where K is a pre-stabilizing feedback gain K that
is fixed beforehand, thus reducing the decision variables
}. To reduce conservativeness,
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. In [11], it was observed that
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The more challenging problem considering model uncer-
tainty is tackled in [8, 13, 14]. When polytopic or struc-
tured feedback model uncertainty occurs, a linear matrix
inequality (LMI) based robust MPC method is proposed
in [14]. When both model uncertainty and additive distur-
bances are present, the method proposed in [13] designs
tubes containing all possible trajectories under polytopic
uncertainty assumptions. Alternative approaches based on
dynamic programming (DP) [15] are shown to obtain tight
solutions, but the computation quickly becomes intractable.
Adaptive robust MPC, which considers estimation of the
parametric uncertainty while implementing robust control,
is proposed in [16-18].

As described above, there is a rich body of work ad-
dressing the robust MPC problem, and it remains an active
area of research for which no definitive solution exists. Due
to the inherent intractability of the general robust MPC
problem subject to both additive disturbance and model
uncertainty, all of the aforementioned methods trade off
conservati for ional tractability in different
ways. The recently developed System Level Synthesis (SLS)
parameterization [19] provides an alternative approach to
tackling the robust MPC problem and exploring this tradeoff
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Distributionally Robust CS

Nominal

Distribution

cC A .
W (P, IP) = ( inf

s

Wasserstein Ambiguity Set
B, (P) = {Q €S : Wy(Q,P) < ¢}

Joint distributions

with marginals P, P’

I o6 e d&’))é
N\

Transportation
Cost

J. Pilipovsky, and P. Tsiotras, “Distributionally Robust Density Control with Wasserstein Ambiguity Sets”, 63th IEEE Conference on Decision and Control

Italy, Dec. 16—19, 2024, pp. 1081-1086.

, Milan,



Distributionally Robust CS

Wasserstein Ambiguity Set

B:,(P) = {Q € S: Wy(Q,P) <e)

wiep) 2 ( e [ eer )]

mell(P,P')

P, = N(0,1) GOAL: Ensure robust performance of the
system under a range of uncertainties
that can potentially affect the system

J. Pilipovsky, and P. Tsiotras, “Distributionally Robust Density Control with Wasserstein Ambiguity Sets”, 63th IEEE Conference on Decision and Control, Milan,
ltaly, Dec. 16—19, 2024, pp. 1081-1086.



Distributionally Robust CS

Wasserstein Ambiguity Set
B:,(P) = {Q €S : WiQ,P) <c}

wiep) 2 ( e [ eer )]

mell(P,P')

APPROACH: Steer the state distribution
of a dynamical system subject to partially
known uncertainties

J. Pilipovsky, and P. Tsiotras, “Distributionally Robust Density Control with Wasserstein Ambiguity Sets”, 63th IEEE Conference on Decision and Control, Milan,
ltaly, Dec. 16—19, 2024, pp. 1081-1086.



Problem Statement

GOAL: Steer the ambiguity set of the state to a prescribed,

terminal ambiguity set Sy = Bg'”(IP’f) while minimizing
the distributionally-robust cost P
V W =BlI®,)

N-1 N—1
J =P Z |2 || + {P%a@(}@ﬁii &, Qray, + o) Ryt
k=0 k=0

Enforce state constraints along the planning horizon

X = {z: mz{xxa}m#—ﬁj <0}
JE€

Probability of violating the
constraints is less than y

frequency
o
R
o

o
—
u

0.05 -

0.00 -

Why CVaR?

Convex

Penalizes worst-case
violations (“black swan”)
Implicitly satisfies VaR




Problem Statement

GOAL: Steer the ambiguity set of the state to a prescribed,
terminal ambiguity set Sy il Bg'” (P£) while minimizing Why CVaR?
the distributionally-robust cost

* Convex

* Penalizes worst-case
violations (“black swan”)

* Implicitly satisfies VaR

N—1
= T E
J 6;||ukl|+lgé% P

N—1

~T ~ ~T ~
E &, QrZy + Uy, Rty
k—0

Enforce the distributionally-robust CVaR (DR-CVaR)
constraints

sup CVaRIf’“_,Y (max Qi r) + @-) <0
P €Sk j€lJ]




Problem Formulation

Consider augmented system

x = Azxg + Bu + Dw,

with control law

ur = v + K

New decision variable

K=L(I+BL)™!

Distributional state uncertainty at k

Sk = 0 Azo+Bv K

(6, * P)(B)

Wasserstein Tubes

~k)#@fw)




Problem Formulation

Consider augmented system

x = Azxg + Bu + Dw,

with control law

ur = v + K

Distributional state uncertainty at k

Noit .
Sk = 0 Awo+Bv *WLk)#Pw)

L, = E,(I + BL)D

a0 ~ Jl2oDf
]BQ.HQODI_Q(]/P\) | ) IB%J;' Il Dl_l(]P)et) BLI | (]P)et+1)

Wasserstein Tubes

Key Result: Propagation of uncertainty through stochastic LTI systems (L. Aolaritei, N. Lanzetti, H.

A4BL(P) = B4 (A4P)

Chen, and F. Dorfler, 2023)




Gelbrich Ambiguity Set

Ge(p, X)) =1Q € S« (Eqglé], Covglé]) € Usp, 2)}

U5, ) = {(1, ) € R'XSL: G((p, D), (1,%) < e}
1 1
G*(t11, 3), (112, 2)) 2 || —pio]+tr | S + B — 2235155
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Gelbrich Ambiguity Set

Ge(p, X)) =1Q € S« (Eqglé], Covglé]) € Usp, 2)}

AN AN

Us(f1,3) = {(1, ) € RIxS{ 1 G((u, X), (1, %)) < e}

DO D=

1
G (11, 3), (12, 2)) 2 || —pial P +tr | T + 3 — 2(TF 05

)

DN —
| I |

Satisfaction of Gelbrich DR-CVaR constraints implies satisfaction of Wasserstein DR-CVaR constraints




Chance Constraints

The individual DR-CVAR constraints

Sup CVaR[f’“_m(a}af;k + 3,) <0,
Pr €Sk

are satisfied if the following convex constraints are satisfied

B, + alji(v) + Ty ol Sk( L)y + Ex(L) oy | < 0

where,

R [ = 7 L — i
X = LpYyL] e =e(l+ Tjgk)l/zaglax(llk) Tik = :

J. Pilipovsky, and P. Tsiotras, “Distributionally Robust Density Control with Wasserstein Ambiguity Sets”, 63th IEEE Conference on Decision and Control, Milan,
ltaly, Dec. 16—19, 2024, pp. 1081-1086.



Chance Constraints

Similarly, the DR Objective and terminal ambiguity set
constraint can also be formulated in terms of LM|s

Using Schur complement we can further reformulate these constraints as tractable
second-order cone constraints (SOCC) and linear matrix inequalities (LMIs)

J. Pilipovsky, and P. Tsiotras, “Distributionally Robust Density Control with Wasserstein Ambiguity Sets”, 63th IEEE Conference on Decision and Control, Milan,
ltaly, Dec. 16—19, 2024, pp. 1081-1086.



Performance Comparison — 2D System

DR-DS CS

DR-DS (o)

Nominal disturbance

P, = N(0,1)

Extreme Gaussian
disturbance

WE ~ N(Oa 772])
W(P,, I@’w) = ¢

DR-DS CS

Non-Gaussian disturbance
(3-DOF t-distribution)



Take-Aways

Directly controlling distributions of trajectories
leads to strict performance guarantees

Uncertainty Synthesis
e Control of system with uncertainty
e Control of uncertainty

Many, many, applications
* Pinpoint landing
 Swarms, Ensemble control

For linear systems with Gaussian noise, theory
well-developed

Have extended CS theory to
* Unknown system matrices
e Unknown noise statistics
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