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Uncertainty Quantification
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Many Applications
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Convex Programing Approach
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Lossless Convexification

F. Liu, G. Rapakoulias, and P. Tsiotras, “Optimal Covariance Steering for Discrete-Time Linear Stochastic Systems,” IEEE Transactions on Automatic Control, Vol. 70, No. 4, pp. 1558-2523, 2025



Chance Constraints

G. Rapakoulias, and P. Tsiotras, “Discrete-time Optimal Covariance Steering via Semidefinite Programming,” 62nd IEEE Conference on Decision and Control, 
Marina Bay Sands, Singapore, Dec. 13-15, 2023, pp. 1802-1807



Chance Constraints

G. Rapakoulias, and P. Tsiotras, “Discrete-time Optimal Covariance Steering via Semidefinite Programming,” 62nd IEEE Conference on Decision and Control, 
Marina Bay Sands, Singapore, Dec. 13-15, 2023, pp. 1802-1807



Data-Driven CS

Pilipovsky, J., and Tsiotras, P., “Data-Driven Covariance Steering Control Design,’’ 62nd IEEE Conference on Decision and Control, Marina Bay Sands, Singapore, 
Dec. 13-15, 2023, pp. 2610-2615.

Consider the discrete-time deterministic system

Two potential approaches
• Indirect approach 
• Direct approach

Willems' Fundamental Lemma, characterizes all 
trajectories of an LTI system through the range 

space of an input/output data matrix



Data-Driven CS

Pilipovsky, J., and Tsiotras, P., “Data-Driven Covariance Steering Control Design,’’ 62nd IEEE Conference on Decision and Control, Marina Bay Sands, Singapore, 
Dec. 13-15, 2023, pp. 2610-2615.

Consider the discrete-time deterministic system

Two potential approaches
• Indirect approach 
• Direct approach

Willems' Fundamental Lemma, characterizes all 
trajectories of an LTI system through the range 

space of an input/output data matrix

Jan Willems (1939-2013)



Assume persistency of excitation

Assume control law



Assume persistency of excitation

Assume control law



Assume persistency of excitation

Assume control law

Convex Optimization 
Problem!



Assume persistency of excitation

Assume control law



Noisy Data



ML Noise Estimation



ML Noise Estimation



Estimation Error

Pilipovsky, J., and Tsiotras, P., “DUST: A Framework for Data-Driven Density Steering,”  2025, arxiv.org/abs/2408.02777



Robust DD-DS

SLS!



Robust DD-DS

SLS!



Example

DD-MS R-DD-MS

True Model

R-DD-MSDD-MS

Random Models



Distributionally Robust CS

Wasserstein Ambiguity Set

J. Pilipovsky, and P. Tsiotras, “Distributionally Robust Density Control with Wasserstein Ambiguity Sets”, 63th IEEE Conference on Decision and Control, Milan, 
Italy, Dec. 16–19, 2024, pp. 1081-1086.

Nominal 
Distribution

Transportation
CostJoint distributions 

with marginals



Distributionally Robust CS

Wasserstein Ambiguity Set

J. Pilipovsky, and P. Tsiotras, “Distributionally Robust Density Control with Wasserstein Ambiguity Sets”, 63th IEEE Conference on Decision and Control, Milan, 
Italy, Dec. 16–19, 2024, pp. 1081-1086.

GOAL: Ensure robust performance of the 
system under a range of uncertainties 
that can potentially affect the system



Distributionally Robust CS

Wasserstein Ambiguity Set

J. Pilipovsky, and P. Tsiotras, “Distributionally Robust Density Control with Wasserstein Ambiguity Sets”, 63th IEEE Conference on Decision and Control, Milan, 
Italy, Dec. 16–19, 2024, pp. 1081-1086.

APPROACH: Steer the state distribution
of a dynamical system subject to partially 

known uncertainties



Problem Statement

GOAL: Steer the ambiguity set of the state to a prescribed, 
terminal ambiguity set                               while minimizing 
the distributionally-robust cost 

Enforce state constraints along the planning horizon

Probability of violating the 
constraints is less than 𝛾

Why CVaR?

• Convex
• Penalizes worst-case 

violations (“black swan”)
• Implicitly satisfies VaR



Problem Statement

GOAL: Steer the ambiguity set of the state to a prescribed, 
terminal ambiguity set                               while minimizing 
the distributionally-robust cost 

Enforce the distributionally-robust CVaR (DR-CVaR) 
constraints

Why CVaR?

• Convex
• Penalizes worst-case 

violations (“black swan”)
• Implicitly satisfies VaR



Problem Formulation

Consider augmented system

with control law

Wasserstein Tubes

New decision variable

Distributional state uncertainty at k 



Problem Formulation

Consider augmented system

with control law

Wasserstein Tubes

Key Result: Propagation of uncertainty through stochastic LTI systems (L. Aolaritei, N. Lanzetti, H. 
Chen, and F. Dörfler, 2023) 

Distributional state uncertainty at k 



Gelbrich Ambiguity Set



Gelbrich Ambiguity Set

Satisfaction of Gelbrich DR-CVaR constraints implies satisfaction of Wasserstein DR-CVaR constraints



Chance Constraints

The individual DR-CVAR constraints

are satisfied if the following convex constraints are satisfied

where,

J. Pilipovsky, and P. Tsiotras, “Distributionally Robust Density Control with Wasserstein Ambiguity Sets”, 63th IEEE Conference on Decision and Control, Milan, 
Italy, Dec. 16–19, 2024, pp. 1081-1086.



Chance Constraints

The individual DR-CVAR constraints

are satisfied if the following convex constraints are satisfied

where,
using Schur complement we can further reformulate these constraints as tractable second-order cone constraints 

(SOCC) and linear matrix inequalities (LMIs)

Using Schur complement we can further reformulate these constraints as tractable 
second-order cone constraints (SOCC) and linear matrix inequalities (LMIs)

J. Pilipovsky, and P. Tsiotras, “Distributionally Robust Density Control with Wasserstein Ambiguity Sets”, 63th IEEE Conference on Decision and Control, Milan, 
Italy, Dec. 16–19, 2024, pp. 1081-1086.

Similarly, the DR Objective and terminal ambiguity set 
constraint can also be formulated in terms of LMIs 



Performance Comparison – 2D System

Non-Gaussian disturbance 
(3-DOF t-distribution)

CSDR-DS

Extreme Gaussian 
disturbance 

CSDR-DS

Nominal disturbance 

DR-DS CS



Take-Aways

• Directly controlling distributions of trajectories 
leads to strict performance guarantees

• Uncertainty Synthesis
• Control of system with uncertainty

• Control of uncertainty

• Many, many, applications
• Pinpoint landing
• Swarms,  Ensemble control

• For linear systems with Gaussian noise, theory 
well-developed

• Have extended CS theory to
• Unknown system matrices

• Unknown noise statistics


	Slide 1
	Slide 2: Distribution Steering
	Slide 3: Distribution Steering
	Slide 4: Many Applications
	Slide 5
	Slide 6: Convex Programing Approach
	Slide 7: Lossless Convexification
	Slide 8: Chance Constraints
	Slide 9: Chance Constraints
	Slide 10: Data-Driven CS
	Slide 11: Data-Driven CS
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Noisy Data
	Slide 17: ML Noise Estimation
	Slide 18: ML Noise Estimation
	Slide 19: Estimation Error
	Slide 20: Robust DD-DS
	Slide 21: Robust DD-DS
	Slide 22: Example
	Slide 23: Distributionally Robust CS
	Slide 24: Distributionally Robust CS
	Slide 25: Distributionally Robust CS
	Slide 26
	Slide 27
	Slide 28: Problem Formulation
	Slide 29: Problem Formulation
	Slide 30: Gelbrich Ambiguity Set
	Slide 31: Gelbrich Ambiguity Set
	Slide 32: Chance Constraints
	Slide 33: Chance Constraints
	Slide 34
	Slide 35: Take-Aways

