

Data-driven and Robust Distribution Steering

Panagiotis Tsiotras

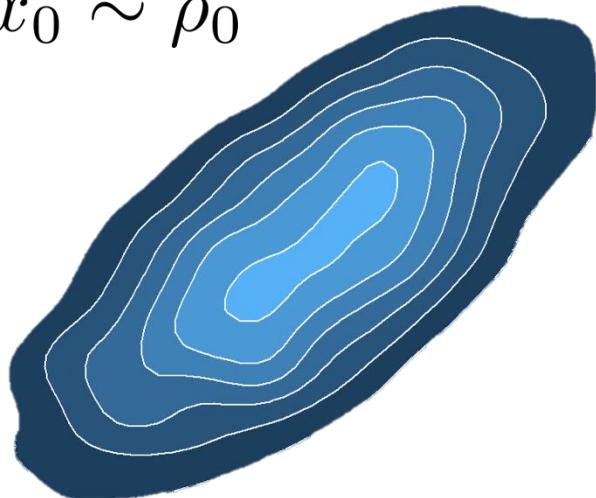
School of Aerospace Engineering
Institute for Robotics and Intelligent Machines
Georgia Institute of Technology
(joint work with J. Pilipovsky)

CDC 2025 – Stochastic Planning and Control Workshop
Rio de Janeiro, December 9, 2025

Distribution Steering

$$\frac{\partial}{\partial t} \rho(x, t) = -\frac{\partial}{\partial x} (f(x, u) \rho(x, t)) + \frac{1}{2} \frac{\partial^2}{\partial x^2} (\sigma^2 \rho(x, t))$$

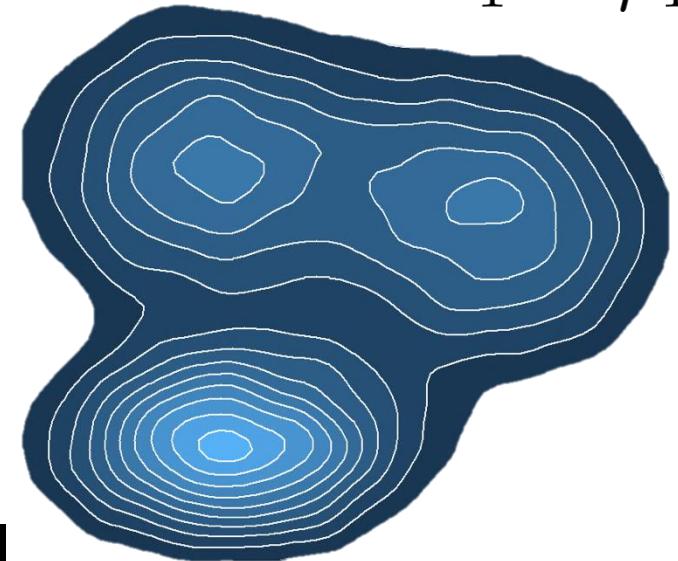
$x_0 \sim \rho_0$



$$dx = f(x, u)dt + \sigma dw$$

$$dx = f(x, u)dt$$

$x_1 \sim \rho_1$

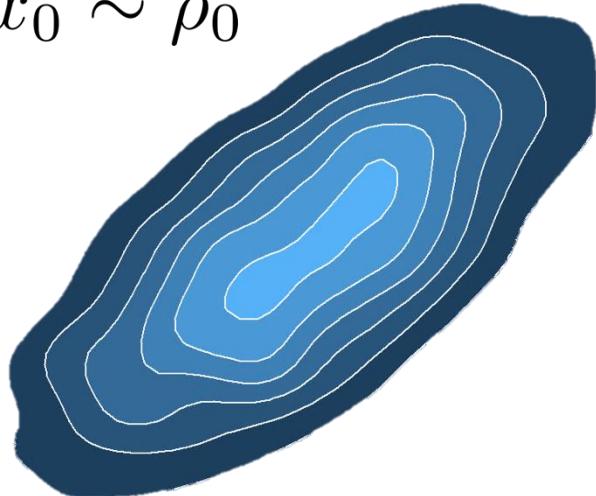


$$\frac{\partial}{\partial t} \rho(x, t) = -\frac{\partial}{\partial x} (f(x, u) \rho(x, t))$$

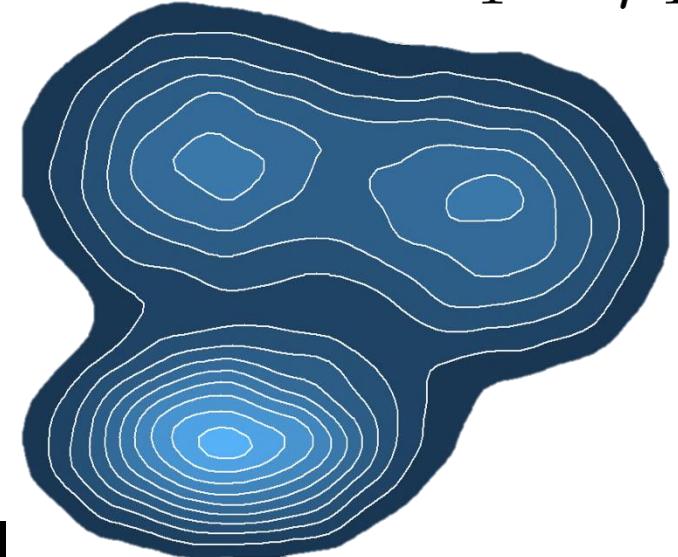
Distribution Steering

$$\frac{\partial}{\partial t} \rho(x, t) = -\frac{\partial}{\partial x} (f(x, u) \rho(x, t)) + \frac{1}{2} \frac{\partial^2}{\partial x^2} (\sigma^2 \rho(x, t))$$

$x_0 \sim \rho_0$



$x_1 \sim \rho_1$



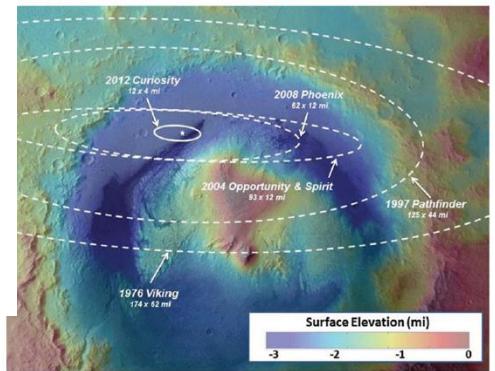
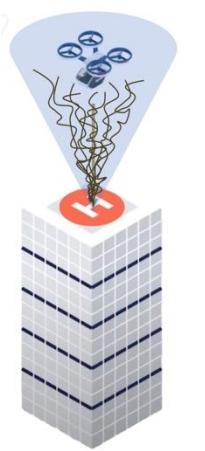
Uncertainty Quantification
Uncertainty Mitigation

$$\frac{\partial}{\partial t} \rho(x, t) = -\frac{\partial}{\partial x} (f(x, u) \rho(x, t))$$

Many Applications

Pinpoint landing

SciTech 2019



Swarm robotics

L-CSS 2025

Precision package delivery

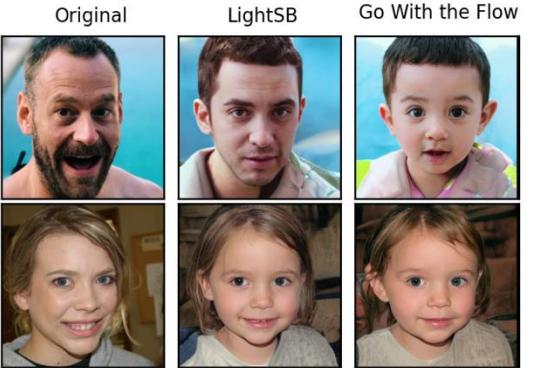
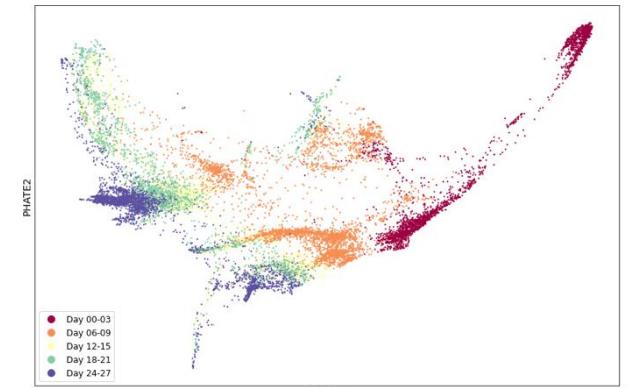


Image-to-Image translation

ChatGPT: Generate an image of a GT astronaut cat chasing a tennis ball.

Generative modeling

NeurIPS 2025



Embryonic cell modeling

NeurIPS 2025

Problem Formulation

Consider discrete-time stochastic linear system

$$x_{k+1} = A_k x_k + B_k u_k + D_k w_k$$

- We wish the initial and final states to be distributed according to

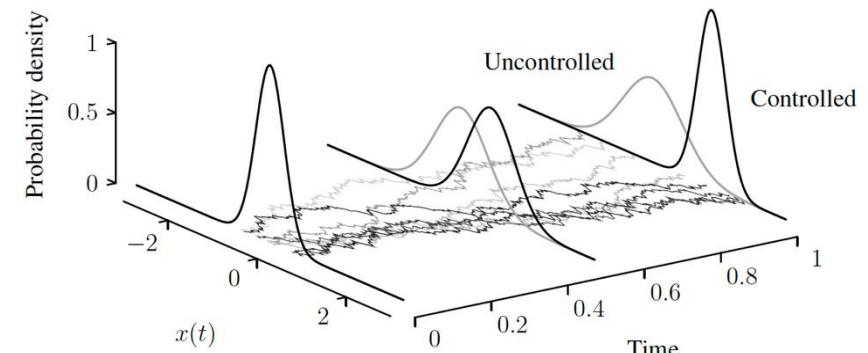
$$x_0 \sim \mathcal{N}(\mu_0, \Sigma_0), \quad x_N \sim \mathcal{N}(\mu_N, \Sigma_N)$$

where $\mu_0, \Sigma_0, \mu_N, \Sigma_N$ given, while minimizing the cost function

$$J(x, u) = \mathbb{E} \left[\sum_{k=0}^{N-1} x_k^\top Q_k x_k + u_k^\top R_k u_k \right] + x_N^\top Q_N x_N$$

where $Q_k \succeq 0$ and $R_k \succ 0$ for all $k = 0, 1, \dots, N-1$.

- Assume that $\Sigma_0 \succeq 0$ and $\Sigma_N \succ 0$,



Convex Programming Approach

- Let the control

$$u_k = \mathbf{K}_k(x_k - \mu_k) + \mathbf{v}_k,$$

Dynamics of the state mean and covariance

$$\mu_{k+1} = A_k \mu_k + B_k \mathbf{v}_k,$$

$$\Sigma_{k+1} = (A_k + B_k \mathbf{K}_k) \Sigma_k (A_k + B_k \mathbf{K}_k)^\top + D_k D_k^\top.$$

- Use the standard transformation $\mathbf{U}_k \triangleq \mathbf{K}_k \Sigma_k$

$$\min_{\Sigma_k, \mathbf{U}_k, \mu_k, \mathbf{v}_k} J = \sum_{k=0}^{N-1} \text{tr}(Q_k \Sigma_k) + \text{tr}(R_k \mathbf{U}_k \Sigma_k^{-1} \mathbf{U}_k^\top) + \mu_k^\top Q_k \mu_k + \mathbf{v}_k^\top R_k \mathbf{v}_k$$

$$\mu_{k+1} = A_k \mu_k + B_k \mathbf{v}_k$$

$$A_k \Sigma_k A_k^\top - B_k \mathbf{U}_k A_k^\top - A_k \mathbf{U}_k^\top B_k + B_k \mathbf{U}_k \Sigma_k^{-1} \mathbf{U}_k^\top B_k^\top + D_k D_k^\top - \Sigma_{k+1} = 0$$

Lossless Convexification

Theorem (Rapakoulias & PT, 2023)

The following convex relaxation is lossless

$$\min_{\Sigma_k, \mathcal{U}_k, Y_k} \quad J_\Sigma = \sum_{k=0}^{N-1} \text{tr}(Q_k \Sigma_k) + \text{tr}(R_k Y_k)$$

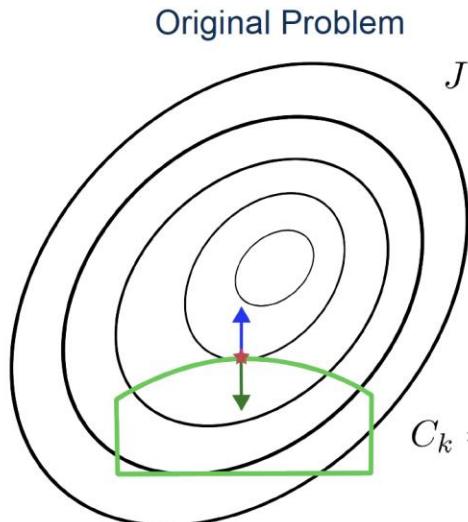
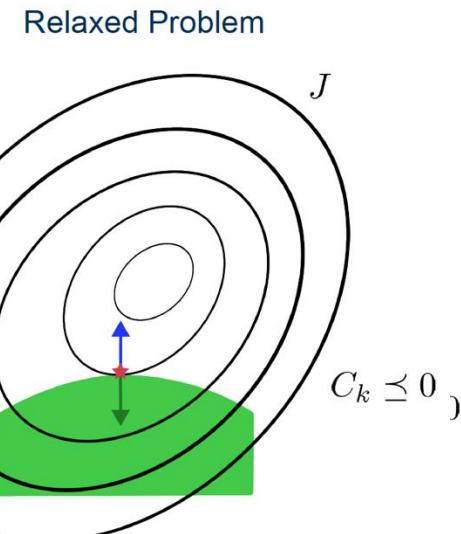
$$U_k \Sigma_k^{-1} U_k^\top - Y_k \not\leq 0 \iff \begin{bmatrix} \Sigma_k & U_k^\top \\ U_k & Y_k \end{bmatrix} \succeq 0$$

$$A_k \Sigma_k A_k^\top - B_k \mathcal{U}_k A_k^\top - A_k \mathcal{U}_k^\top B_k^\top + B_k Y_k B_k^\top + D_k D_k^\top - \Sigma_{k+1} = 0$$

Chance Constraints

$$\Pr(\alpha_x^\top x_k \leq \beta_x) \geq 1 - \epsilon_x$$

$$\Pr(\alpha_u^\top u_k \leq \beta_u) \geq 1 - \epsilon_u$$



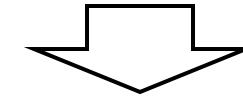
Lossless CC relaxation

The optimal solution satisfies

$$C_k := U_k \Sigma_k^{-1} U_k^\top - Y_k = 0$$

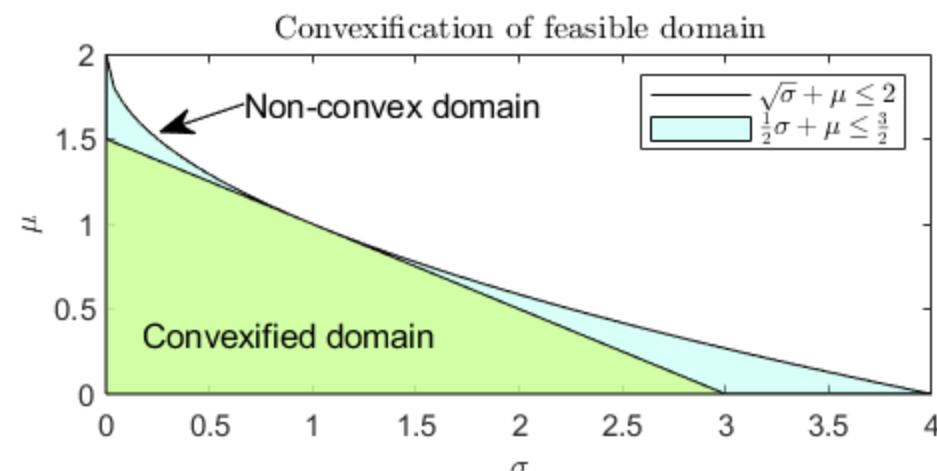
$$\Phi^{-1}(1 - \epsilon_x) \sqrt{\alpha_x^\top \Sigma_k \alpha_x} + \alpha_x^\top \mu_k - \beta_x \leq 0$$

$$\Phi^{-1}(1 - \epsilon_u) \sqrt{\alpha_u^\top U_k \Sigma_k^{-1} U_k^\top \alpha_u} + \alpha_u^\top v_k - \beta_u \leq 0$$



$$\ell^\top \Sigma_k \ell + \alpha_x^\top \mu_k - \beta_x \leq 0$$

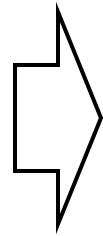
$$e^\top Y_k e + \alpha_u^\top v_k - \beta_u \leq 0$$



Chance Constraints

$$\Pr(\alpha_x^\top x_k \leq \beta_x) \geq 1 - \epsilon_x$$

$$\Pr(\alpha_u^\top u_k \leq \beta_u) \geq 1 - \epsilon_u$$

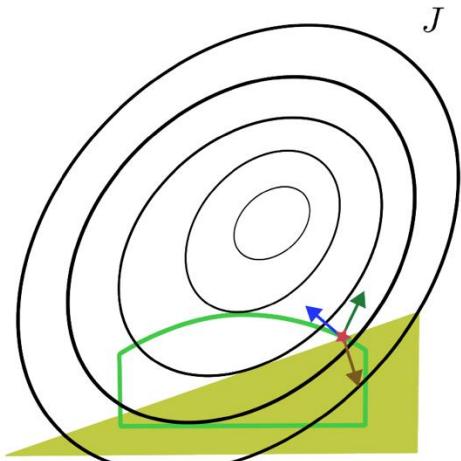


$$\Phi^{-1}(1 - \epsilon_x) \sqrt{\alpha_x^\top \Sigma_k \alpha_x} + \alpha_x^\top \mu_k - \beta_x \leq 0$$

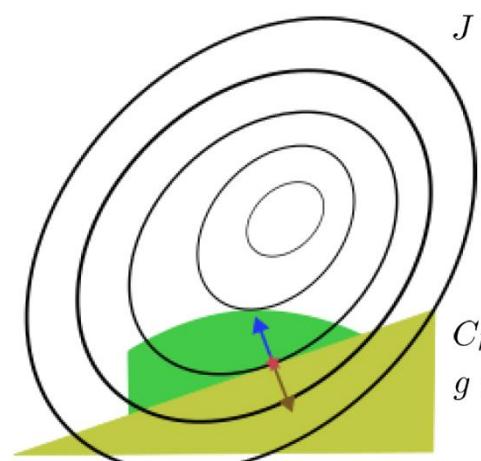
$$\Phi^{-1}(1 - \epsilon_u) \sqrt{\alpha_u^\top Y_k \alpha_u} + \alpha_u^\top v_k - \beta_u \leq 0$$

$$U_k \Sigma_k^{-1} U_k^\top - Y_k \preceq 0$$

Original Problem - Constrained



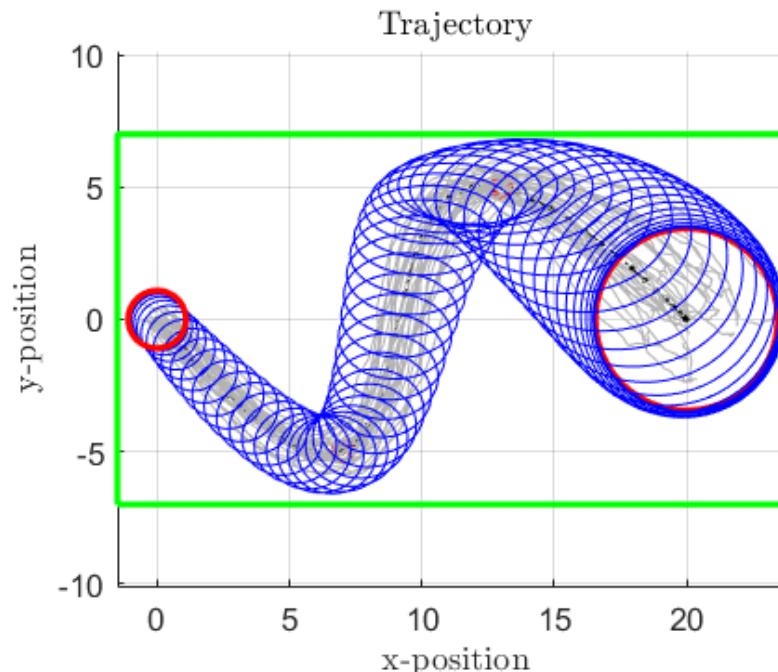
Relaxed Problem - Constrained



Lossless CC relaxation

The optimal solution satisfies

$$C_k := U_k \Sigma_k^{-1} U_k^\top - Y_k = 0$$



Data-Driven CS

Consider the discrete-time *deterministic* system

$$x_{k+1} = Ax_k + Bu_k,$$

A, B : unknown

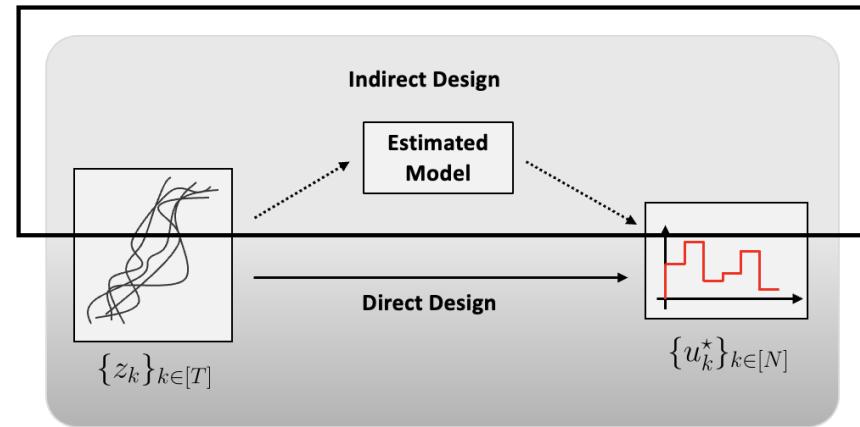
$$x_0 \sim \mathcal{N}(\mu_i, \Sigma_i), \quad x_N = x_f \sim \mathcal{N}(\mu_f, \Sigma_f)$$

$$J(u_0, \dots, u_{N-1}) := \mathbb{E} \left[\sum_{k=0}^{N-1} x_k^\top Q_k x_k + u_k^\top R_k u_k \right]$$

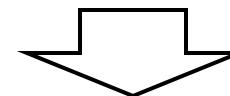
Two potential approaches

- Indirect approach
- Direct approach

Willems' Fundamental Lemma, characterizes **all trajectories** of an LTI system through the range space of an input/output data matrix



$$\begin{aligned} U_{0,T} &:= [u_0^{(d)} \ u_1^{(d)} \ \dots \ u_{T-1}^{(d)}], \\ X_{0,T} &:= [x_0^{(d)} \ x_1^{(d)} \ \dots \ x_{T-1}^{(d)}], \\ X_{1,T} &:= [x_1^{(d)} \ x_2^{(d)} \ \dots \ x_T^{(d)}]. \end{aligned}$$



$$X_{1,T} = AX_{0,T} + BU_{0,T}$$

Data-Driven CS

Consider the discrete-time *deterministic* system

$$x_{k+1} = Ax_k + Bu_k,$$

A, B : unknown

$$x_0 \sim \mathcal{N}(\mu_i, \Sigma_i), \quad x_N = x_f \sim \mathcal{N}(\mu_f, \Sigma_f)$$

$$J(u_0, \dots, u_{N-1}) := \mathbb{E} \left[\sum_{k=0}^{N-1} x_k^\top Q_k x_k + u_k^\top R_k u_k \right]$$

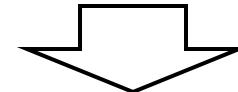
Two potential approaches

- Indirect approach
- Direct approach

Willems' Fundamental Lemma, characterizes **all** **trajectories** of an LTI system through the range space of an input/output data matrix

Jan Willems (1939-2013)

$$\begin{aligned} U_{0,T} &:= [u_0^{(d)} \ u_1^{(d)} \ \dots \ u_{T-1}^{(d)}], \\ X_{0,T} &:= [x_0^{(d)} \ x_1^{(d)} \ \dots \ x_{T-1}^{(d)}], \\ X_{1,T} &:= [x_1^{(d)} \ x_2^{(d)} \ \dots \ x_T^{(d)}]. \end{aligned}$$



$$X_{1,T} = [B \ A] \begin{bmatrix} U_{0,T} \\ X_{0,T} \end{bmatrix}$$

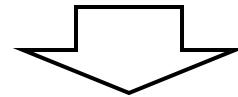
Assume control law

$$u_k = K_k(x_k - \mu_k) + v_k$$

Mean Steering

Assume persistency of excitation

$$\text{rank} \begin{bmatrix} U_{0,T} \\ X_{0,T} \end{bmatrix} = n + m$$



$$\begin{aligned} \min_{\mu_k, \mathbf{v}_k} J_\mu &= \sum_{k=0}^{N-1} (\mu_k^\top Q_k \mu_k + \mathbf{v}_k^\top R_k \mathbf{v}_k) \\ \mu_{k+1} &= X_{1,T} \begin{bmatrix} U_{0,T} \\ X_{0,T} \end{bmatrix}^\dagger \begin{bmatrix} \mathbf{v}_k \\ \mu_k \end{bmatrix} = \hat{A}_k \mu_k + \hat{B}_k \mathbf{v}_k \end{aligned}$$

$$\mu_0 = \mu_i, \quad \mu_N = \mu_f = 0$$

Alternative POV

$$\boxed{\begin{bmatrix} K_k \\ I_n \end{bmatrix} = \begin{bmatrix} U_{0,T} \\ X_{0,T} \end{bmatrix} G_k}$$

$$X_{1,T} = [B \ A] \begin{bmatrix} U_{0,T} \\ X_{0,T} \end{bmatrix}$$

$$[\hat{A} \ \hat{B}] = \text{argmin}_{B,A} \left\| X_{1,T} - [B \ A] \begin{bmatrix} U_{0,T} \\ X_{0,T} \end{bmatrix} \right\|_{\text{F}}$$

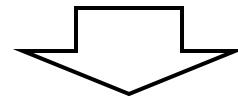
Covariance Steering

Assume control law

$$u_k = K_k(x_k - \mu_k) + v_k$$

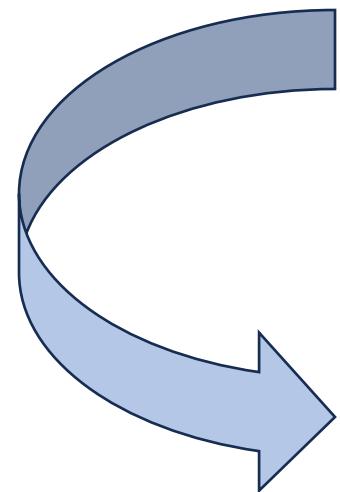
Assume persistency of excitation

$$\text{rank} \begin{bmatrix} U_{0,T} \\ X_{0,T} \end{bmatrix} = n + m$$



$$\begin{bmatrix} K_k \\ I_n \end{bmatrix} = \begin{bmatrix} U_{0,T} \\ X_{0,T} \end{bmatrix} G_k$$

$$X_{1,T} = [B \ A] \begin{bmatrix} U_{0,T} \\ X_{0,T} \end{bmatrix}$$



$$\min_{\Sigma_k, K_k} J_\Sigma = \sum_{k=0}^{N-1} (\text{tr}(Q_k \Sigma_k) + \text{tr}(R_k K_k \Sigma_k K_k^\top))$$

$$\Sigma_{k+1} = (A + B K_k) \Sigma_k (A + B K_k)^\top$$

$$\Sigma_0 = \Sigma_i \quad \Sigma_N = \Sigma_f$$

$$\Sigma_{k+1} = [B \ A] \begin{bmatrix} K_k \\ I_n \end{bmatrix} \Sigma_k \begin{bmatrix} K_k \\ I_n \end{bmatrix}^\top [B \ A]^\top$$

$$= X_{1,T} G_k \Sigma_k G_k^\top X_{1,T}^\top$$

$$S_k = G_k \Sigma_k$$

$$= X_{1,T} S_k \Sigma_k^{-1} S_k^\top X_{1,T}^\top$$

$$Y_k \succeq S_k \Sigma_k^{-1} S_k^\top$$

Assume control law

$$u_k = K_k(x_k - \mu_k) + v_k$$

Assume persistency of excitation

$$\text{rank} \begin{bmatrix} U_{0,T} \\ X_{0,T} \end{bmatrix} = n + m$$



Convex Optimization
Problem!

$$\begin{bmatrix} K_k \\ I_n \end{bmatrix} = \begin{bmatrix} U_{0,T} \\ X_{0,T} \end{bmatrix} G_k$$

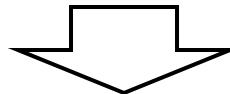
$$X_{1,T} = [B \ A] \begin{bmatrix} U_{0,T} \\ X_{0,T} \end{bmatrix}$$

Assume control law

$$u_k = K_k(x_k - \mu_k) + v_k$$

Assume persistency of excitation

$$\text{rank} \begin{bmatrix} U_{0,T} \\ X_{0,T} \end{bmatrix} = n + m$$



$$\boxed{\begin{bmatrix} K_k \\ I_n \end{bmatrix} = \begin{bmatrix} U_{0,T} \\ X_{0,T} \end{bmatrix} G_k}$$

$$X_{1,T} = [B \ A] \begin{bmatrix} U_{0,T} \\ X_{0,T} \end{bmatrix}$$

Covariance Steering

$$\min_{\Sigma_k, \mathcal{S}_k, \mathcal{Y}_k} \sum_{k=0}^{N-1} \left(\text{tr}(Q_k \Sigma_k) + \text{tr}(R_k U_{0,T} \mathcal{Y}_k U_{0,T}^\top) \right)$$

$$\Sigma_0 = \Sigma_i, \quad \Sigma_N = \Sigma_f$$

$$X_{1,T} \mathcal{Y}_k X_{1,T}^\top - \Sigma_{k+1} = 0$$

$$\Sigma_k - X_{0,T} \mathcal{S}_k = 0$$

$$\begin{bmatrix} \Sigma_k & \mathcal{S}_k^\top \\ \mathcal{S}_k & \mathcal{Y}_k \end{bmatrix} \succeq 0$$

Noisy Data

$$x_{k+1} = Ax_k + Bu_k + \xi_k, \quad \xi_k \sim \mathcal{N}(0, \Sigma_\xi)$$

$$X_{1,T} = AX_{0,T} + BU_{0,T} + \Xi_{0,T}, \quad \Xi_{0,T} = [\xi_0, \dots, \xi_{T-1}]$$

Mean Propagation

$$\mu_{k+1} = (X_{1,T} - \Xi_{0,T}) \begin{bmatrix} U_{0,T} \\ X_{0,T} \end{bmatrix}^\dagger \begin{bmatrix} v_k \\ \mu_k \end{bmatrix} \implies \min_{B,A} \left\| X_{1,T} - \Xi_{0,T} - [B \ A] \begin{bmatrix} U_{0,T} \\ X_{0,T} \end{bmatrix} \right\|_F$$

Covariance Propagation

$$\begin{aligned} \Sigma_{k+1} &= [B \ A] \begin{bmatrix} K_k \\ I_n \end{bmatrix} \Sigma_k \begin{bmatrix} K_k \\ I_n \end{bmatrix}^\top [B \ A]^\top + \Sigma_\xi \\ &= (X_{1,T} - \Xi_{0,T}) G_k \Sigma_k G_k^\top (X_{1,T} - \Xi_{0,T})^\top + \Sigma_\xi \end{aligned}$$

ML Noise Estimation

Let

$$\mathcal{S} = \begin{bmatrix} U_{0,T} \\ X_{0,T} \end{bmatrix} \implies X_{1,T} = [B \ A] \mathcal{S} + \Xi_{0,T}$$

Since $\mathcal{S}\mathcal{S}^\dagger\mathcal{S} = \mathcal{S}$ this yields the constraint

$$(X_{1,T} - \Xi_{0,T})(I_T - \mathcal{S}^\dagger\mathcal{S}) = 0$$

MLE Problem

$$\max_{\Xi_{0,T}, \Sigma_\xi} \mathcal{J}_{\text{ML}} = \sum_{k=0}^{T-1} \log \rho_\xi(\xi_k)$$

$$(X_{1,T} - \Xi_{0,T})(I_T - \mathcal{S}^\dagger\mathcal{S}) = 0$$

where,

$$\rho_\xi(\xi) = \frac{1}{(2\pi)^{n/2}} (\det \Sigma_\xi)^{-1/2} \exp\left(-\frac{1}{2} \xi^\top \Sigma_\xi^{-1} \xi\right)$$

ML Noise Estimation

Let

$$\mathcal{S} = \begin{bmatrix} U_{0,T} \\ X_{0,T} \end{bmatrix} \implies X_{1,T} = [B \quad A] \mathcal{S} + \Xi_{0,T}$$

Since $\mathcal{S}\mathcal{S}^\dagger\mathcal{S} = \mathcal{S}$ this yields the constraint

$$(X_{1,T} - \Xi_{0,T})(I_T - \mathcal{S}^\dagger\mathcal{S}) = 0$$

MLE Solution

The solution to the MLE problem for the most probable noise realization $\Xi_{0,T}$ and disturbance covariance matrix Σ_ξ is given by

$$\hat{\Xi}_{0,T} = X_{1,T}(I_T - \mathcal{S}^\dagger\mathcal{S})$$

$$\hat{\Sigma}_\xi = \frac{1}{T} X_{1,T}(I_T - \mathcal{S}^\dagger\mathcal{S}) X_{1,T}^\top$$

Estimation Error

Estimation Error

Assume $\Sigma_\xi \succ 0$ is known. For the MLE solution, we have the bound

$$\Pr\{\Delta\Xi_{0,T} \in \Delta\} \geq 1 - \delta$$

where,

$$\Delta = \left\{ \|\Delta\Xi_{0,T}\| \leq \|\Sigma_\xi^{1/2}\| Q_{\chi^2_{n(n+m)}}^{1/2} (1 - \delta) \right\}$$

Bound is *independent* of horizon T if data is persistently exciting!

Robust DD-DS

Robust DD Mean Steering

2020 59th IEEE Conference on Decision and Control (CDC)
Jeju Island, Republic of Korea, December 14-18, 2020

Robust Closed-loop Model Predictive Control via System Level Synthesis

Shaoru Chen*, Han Wang*, Manfred Morari, Victor M. Preciado, Nikolai Matni

Abstract—In this paper, we consider the robust closed-loop model predictive control (MPC) of a linear time-variant (LTV) system with norm bounded disturbances and LTV model uncertainty, wherein a series of constrained optimal control problems (OCPs) are solved. Guaranteeing robust feasibility of these OCPs is challenging due to disturbances perturbing the predicted states, and model uncertainty, both of which can render the closed-loop system unstable. As such, a trade-off between the numerical tractability and conservativeness of the solutions is often required. We use the System Level Synthesis (SLS) framework to reformulate these constrained OCPs over closed-loop system responses, and show that this allows us to transparently account for norm bounded additive disturbances and LTV model uncertainty by computing robust state feedback policies. We further show that by exploiting the underlying linear fractional structure of the resulting robust OCPs, we can significantly reduce the conservativeness of existing SLS-based and tube-MPC-based control methods while also improving computational efficiency. We conclude with numerical examples demonstrating the effectiveness of our methods.

I. INTRODUCTION

Model predictive control (MPC) has achieved remarkable success in solving multivariable constrained problems across a wide range of application areas, such as process control [1], power networks [2], and robot locomotion [3]. In MPC, a control action is computed by solving a finite-horizon constrained optimal control problem (OCP) at each sampling time, and then applying the first control action. The stability and performance of MPC depends on the accuracy of the model being used, and indeed robustness to both additive disturbances and model uncertainty must be considered. Although MPC using a nominal model (i.e., one ignoring uncertainty) offers some level of robustness [4], it has been shown that the closed-loop system achieved by nominal MPC can be destabilized by an arbitrarily small disturbance [5]. As a result, robust MPC, which explicitly deals with uncertainty, has received much attention [6].

When only additive disturbances are present, open-loop robust MPC, which optimizes over a sequence of control actions $u = \{u_0, \dots, u_{N-1}\}$ subject to suitably robust

Han Wang is with the Department of Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.

Shaoru Chen, Manfred Morari, Victor M. Preciado and Nikolai Matni are with the Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA (e-mail: {schen, morari, preciado, nmtni}@seas.upenn.edu).

* The first two authors contributed equally to this paper.

SLS!

constraints, can be applied but tends to be overly conservative or even infeasible [7], as a single sequence of inputs u is chosen for all possible disturbance realizations. On the other hand, closed-loop MPC, which optimizes over the control policies $\pi = \{\pi_0(\cdot), \dots, \pi_{N-1}(\cdot)\}$, can reduce the conservativeness of the solutions. However, the policy space is infinite-dimensional and renders the online OCPs intractable. The problem can be rendered tractable by restricting the policies π to lie in a function class that admits a finite-dimensional parameterization. For example, policies of the form $\pi_i(x) = Kx + v_i$ are considered in [8–10], where K is a pre-stabilizing feedback gain K that is fixed beforehand, thus reducing the decision variables to the vectors $\{v_1, \dots, v_{N-1}\}$. To reduce conservativeness, an affine decision constraint $\pi(x) = Kx + v_i$ can be applied with decision variables K_i and v_i ; however, the resulting OCP is non-convex. In [11], it was observed that by re-parameterizing the OCPs to be over disturbance based feedback policies of the form $\pi_i(w) = \sum_{j=0}^{i-1} M_{ij}w_j + v_i$, the resulting OCPs are convex. In [12, 13], the authors propose an alternative (open-loop) MPC invariant set based approach, which bounds the system trajectories within a tube that robustly satisfy constraints.

The more challenging problem considering model uncertainty is tackled in [8, 13, 14]. When polytopic or structured feedback model uncertainty occurs, a linear matrix inequality (LMI) based robust MPC method is proposed in [14]. When both model uncertainty and additive disturbances are present, the method proposed in [13] designs tubes containing all possible trajectories under polytopic uncertainty assumptions. Alternative approaches based on dynamic programming (DP) [15] are shown to obtain tight solutions, but the computation quickly becomes intractable. Adaptive robust MPC, which considers estimation of the parametric uncertainty while implementing robust control, is proposed in [16–18].

As described above, there is a rich body of work addressing the robust MPC problem, and it remains an active area of research for which no definitive solution exists. Due to the inherent intractability of the general robust MPC problem subject to both additive disturbance and model uncertainty, all of the aforementioned methods trade off conservativeness for computational tractability in different ways. The recently developed System Level Synthesis (SLS) parameterization [19] provides an alternative approach to tackling the robust MPC problem and exploring this tradeoff

Robust DD Covariance Steering

$$\min_{\Sigma_k, S_k, Y_k} \sum_{k=0}^{N-1} (\text{tr}(Q_k \Sigma_k) + \text{tr}(R_k U_{0,T} Y_k U_{0,T}^\top))$$

$$\Sigma_0 = \Sigma_i, \quad \Sigma_N = \Sigma_f$$

$$(X_{1,T} - \Xi_{0,T}) S_k \Sigma_k^{-1} S_k^\top (X_{1,T} - \Xi_{0,T})^\top \\ + \Sigma_\xi - \Sigma_{k+1} \preceq 0$$

$$\Sigma_k - X_{0,T} S_k = 0$$

$$S_k \Sigma_k^{-1} S_k^\top - Y_k \preceq 0$$

Robust DD-DS

Robust DD Mean Steering

2020 59th IEEE Conference on Decision and Control (CDC)
Jeju Island, Republic of Korea, December 14-18, 2020

Robust Closed-loop Model Predictive Control via System Level Synthesis

Shaoru Chen*, Han Wang*, Manfred Morari, Victor M. Preciado, Nikolai Matni

Abstract—In this paper, we consider the robust closed-loop model predictive control (MPC) of a linear time-variant (LTV) system with norm bounded disturbances and LTV model uncertainty, wherein a series of constrained optimal control problems (OCPs) are solved. Guaranteeing robust feasibility of these OCPs is challenging due to disturbances perturbing the predicted states, and model uncertainty, both of which can render the closed-loop system unstable. As such, a trade-off between the numerical tractability and conservativeness of the solutions is often required. We use the System Level Synthesis (SLS) framework to reformulate these constrained OCPs over closed-loop system responses, and show that this allows us to transparently account for norm bounded additive disturbances and LTV model uncertainty by computing robust state feedback policies. We further show that by exploiting the underlying linear fractional structure of the resulting robust OCPs, we can significantly reduce the conservativeness of existing SLS-based and tube-MPC-based control methods while also improving computational efficiency. We conclude with numerical examples demonstrating the effectiveness of our methods.

I. INTRODUCTION

Model predictive control (MPC) has achieved remarkable success in solving multivariable constrained optimization problems across a wide range of application areas, such as process control [1], power networks [2], and robot locomotion [3]. In MPC, a control action is computed by solving a finite-horizon constrained optimal control problem (OCP) at each sampling time, and then applying the first control action. The stability and performance of MPC depends on the accuracy of the model being used, and indeed robustness to both additive disturbances and model uncertainty must be considered. Although MPC using a nominal model (i.e., one ignoring uncertainty) offers some level of robustness [4], it has been shown that the closed-loop system achieved by nominal MPC can be destabilized by an arbitrarily small disturbance [5]. As a result, robust MPC, which explicitly deals with uncertainty, has received much attention [6].

When only additive disturbances are present, open-loop robust MPC, which optimizes over a sequence of control actions $u = \{u_0, \dots, u_{N-1}\}$ subject to suitably robust

Haowang Wang is with the Department of Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.

Shaoru Chen, Manfred Morari, Victor M. Preciado and Nikolai Matni are with the Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA (e-mail: {schen, morari, preciado, matni}@seas.upenn.edu).

* The first two authors contributed equally to this paper.

SLS!

constraints, can be applied but tends to be overly conservative or even infeasible [7], as a single sequence of inputs u is chosen for all possible disturbance realizations. On the other hand, closed-loop MPC, which optimizes over the control policies $\pi = \{\pi_0(\cdot), \dots, \pi_{N-1}(\cdot)\}$, can reduce the conservativeness of the solutions. However, the policy space is infinite-dimensional and renders the online OCPs intractable. The problem can be rendered tractable by restricting the policies π to lie in a function class that admits a finite-dimensional parameterization. For example, policies of the form $\pi_i(x) = Kx + v_i$ are considered in [8–10], where K is a pre-stabilizing feedback gain K that is fixed beforehand, thus reducing the decision variables to the vectors $\{v_1, \dots, v_{N-1}\}$. To reduce conservativeness, an affine control constraint $\pi(x) = Kx + v_i$ can be applied with decision variables K_i and v_i ; however, the resulting OCP is non-convex. In [11], it was observed that by re-parameterizing the OCPs to be over disturbance based feedback policies of the form $\pi_i(w) = \sum_{j=0}^{i-1} M_{ij}w_j + v_i$, the resulting OCPs are convex. In [12, 13], the authors propose an alternative (robust) MPC invariant set based approach, which bounds the system trajectories within a tube that robustly satisfy constraints.

The more challenging problem considering model uncertainty is tackled in [8, 13, 14]. When polytopic or structured feedback model uncertainty occurs, a linear matrix inequality (LMI) based robust MPC method is proposed in [14]. When both model uncertainty and additive disturbances are present, the method proposed in [13] designs tubes containing all possible trajectories under polytopic uncertainty assumptions. Alternative approaches based on dynamic programming (DP) [15] are shown to obtain tight solutions, but the computation quickly becomes intractable. Adaptive robust MPC, which considers estimation of the parametric uncertainty while implementing robust control, is proposed in [16–18].

As described above, there is a rich body of work addressing the robust MPC problem, and it remains an active area of research for which no definitive solution exists. Due to the inherent intractability of the general robust MPC problem subject to both additive disturbance and model uncertainty, all of the aforementioned methods trade off conservativeness for computational tractability in different ways. The recently developed System Level Synthesis (SLS) parameterization [19] provides an alternative approach to tackling the robust MPC problem and exploring this tradeoff

Robust DD Covariance Steering

Rewrite perturbation LMI as

$$\Delta G_k^\Sigma = \Theta^\top(\mathcal{S}_k) \Delta \Xi_{0,T}^\top \Pi + \Pi^\top \Delta \Xi_{0,T} \Theta(\mathcal{S}_k)$$

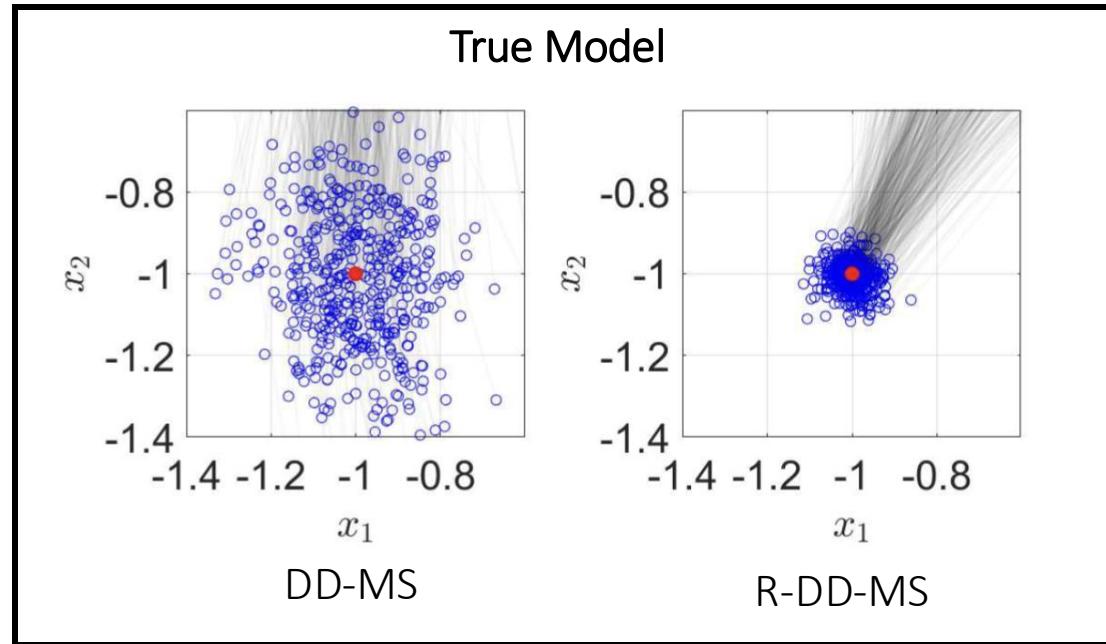
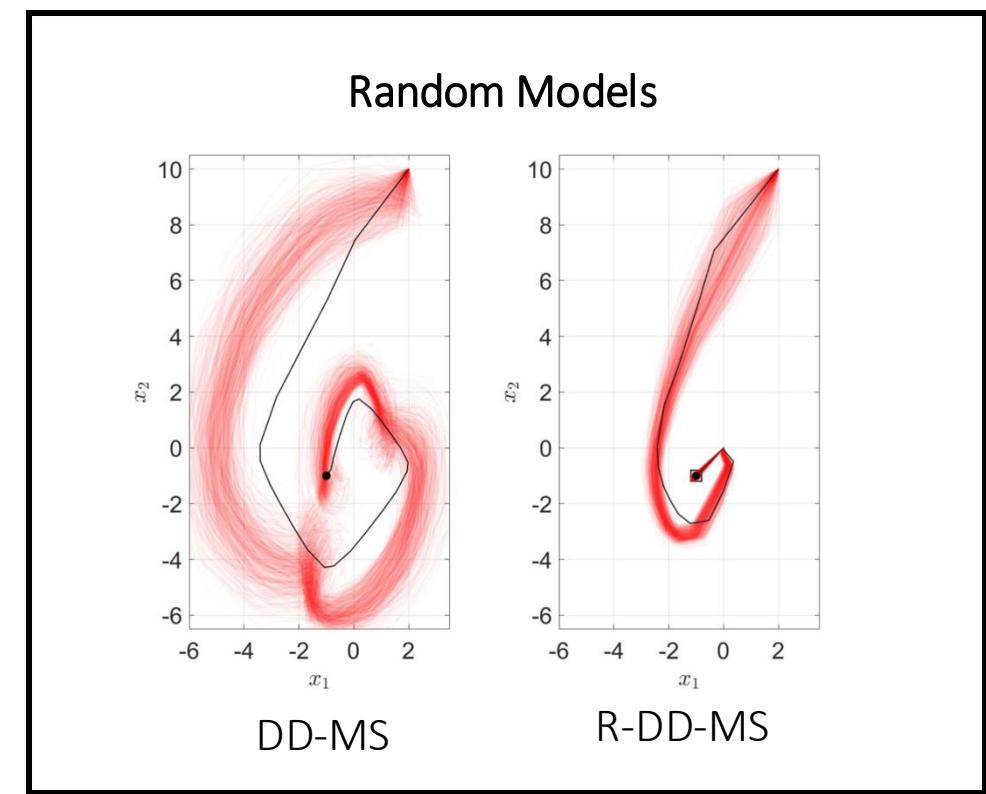
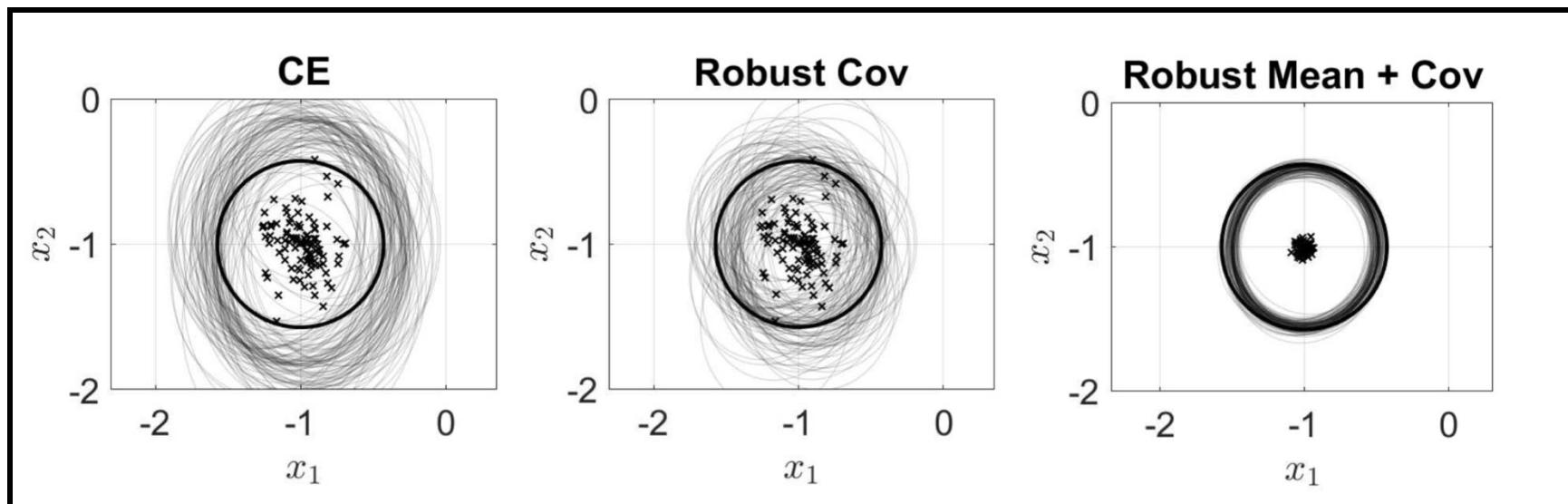
where,

$$\Theta(\mathcal{S}_k) = \begin{bmatrix} 0 \\ -\mathcal{S}_k \end{bmatrix}, \quad \Pi = \begin{bmatrix} I \\ 0 \end{bmatrix}$$

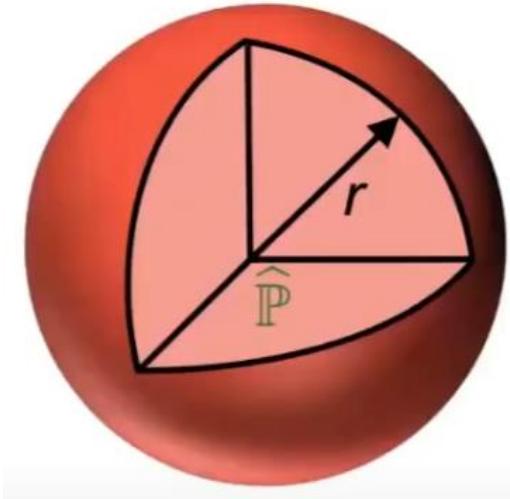
Using standard results from RO (e.g, A. Ben-Tal, L.E. Ghaoui, A. Nemirovski, 2009)

$$\begin{bmatrix} \lambda I & \rho(\delta) \Theta(\mathcal{S}_k) \\ \rho(\delta) \Theta^\top(\mathcal{S}_k) & \hat{G}_k^\Sigma(\Sigma_k, \Sigma_{k+1}, \mathcal{S}_k) - \lambda \Pi^\top \Pi \end{bmatrix} \succeq 0$$

Example



Distributionally Robust CS



Nominal
Distribution

Wasserstein Ambiguity Set

$$\mathbb{B}_{\epsilon,p}^c(\mathbb{P}) = \{\mathbb{Q} \in \mathcal{S} : \mathbb{W}_p^c(\mathbb{Q}, \mathbb{P}) \leq \epsilon\}$$

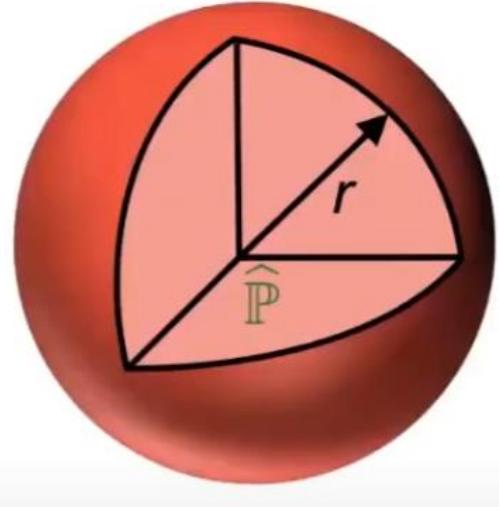
$$\mathbb{W}_p^c(\mathbb{P}, \mathbb{P}') \triangleq \left(\inf_{\pi \in \Pi(\mathbb{P}, \mathbb{P}')} \int_{\mathbb{R}^d \times \mathbb{R}^d} c(\xi, \xi')^p \pi(d\xi, d\xi') \right)^{\frac{1}{p}}$$

$$\mathbb{P}_w = \mathcal{N}(0, I)$$

Joint distributions
with marginals \mathbb{P}, \mathbb{P}'

Transportation
Cost

Distributionally Robust CS



Wasserstein Ambiguity Set

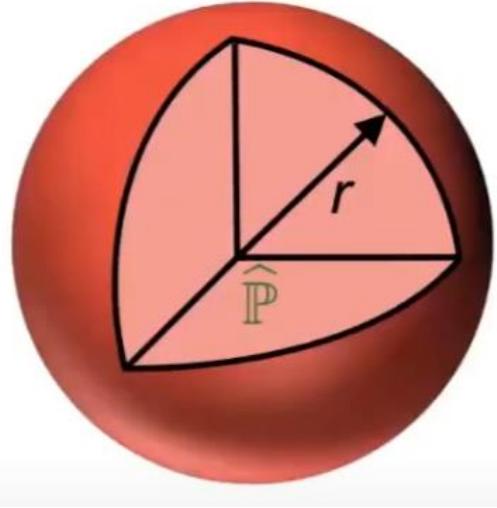
$$\mathbb{B}_{\epsilon,p}^c(\mathbb{P}) = \{\mathbb{Q} \in \mathcal{S} : \mathbb{W}_p^c(\mathbb{Q}, \mathbb{P}) \leq \epsilon\}$$

$$\mathbb{W}_p^c(\mathbb{P}, \mathbb{P}') \triangleq \left(\inf_{\pi \in \Pi(\mathbb{P}, \mathbb{P}')} \int_{\mathbb{R}^d \times \mathbb{R}^d} c(\xi, \xi')^p \, \pi(d\xi, d\xi') \right)^{\frac{1}{p}}$$

$$\mathbb{P}_w = \mathcal{N}(0, I)$$

GOAL: Ensure robust performance of the system under a **range of uncertainties** that can potentially affect the system

Distributionally Robust CS



Wasserstein Ambiguity Set

$$\mathbb{B}_{\epsilon,p}^c(\mathbb{P}) = \{\mathbb{Q} \in \mathcal{S} : \mathbb{W}_p^c(\mathbb{Q}, \mathbb{P}) \leq \epsilon\}$$

$$\mathbb{W}_p^c(\mathbb{P}, \mathbb{P}') \triangleq \left(\inf_{\pi \in \Pi(\mathbb{P}, \mathbb{P}')} \int_{\mathbb{R}^d \times \mathbb{R}^d} c(\xi, \xi')^p \, \pi(d\xi, d\xi') \right)^{\frac{1}{p}}$$

$$\mathbb{P}_w = \mathcal{N}(0, I)$$

APPROACH: Steer the state distribution of a dynamical system subject to **partially known uncertainties**

Problem Statement

GOAL: Steer the ambiguity set of the state to a prescribed, terminal ambiguity set $\mathbb{S}_f \triangleq \mathbb{B}_\delta^{\|\cdot\|}(\mathbb{P}_f)$ while minimizing the distributionally-robust cost

$$\mathcal{W} = \mathbb{B}_\varepsilon^{\|\cdot\|}(\hat{\mathbb{P}}_w)$$

$$\mathcal{J} = \beta \sum_{k=0}^{N-1} \|\bar{u}_k\| + \max_{\mathbb{P} \in \mathcal{W}} \mathbb{E}_{\mathbb{P}} \left[\sum_{k=0}^{N-1} \tilde{x}_k^\top Q_k \tilde{x}_k + \tilde{u}_k^\top R_k \tilde{u}_k \right]$$

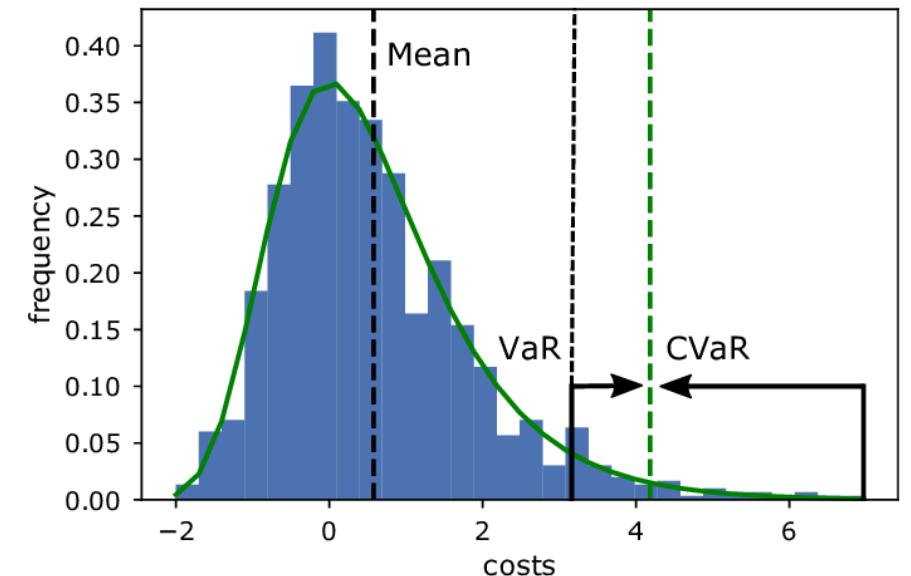
Enforce state constraints along the planning horizon

$$\mathcal{X} \triangleq \{x : \max_{j \in [J]} \alpha_j^\top x + \beta_j \leq 0\}$$

Probability of violating the constraints is less than γ

Why CVaR?

- Convex
- Penalizes worst-case violations (“black swan”)
- Implicitly satisfies VaR



Problem Statement

GOAL: Steer the ambiguity set of the state to a prescribed, terminal ambiguity set $\mathbb{S}_f \triangleq \mathbb{B}_\delta^{\|\cdot\|}(\mathbb{P}_f)$ while minimizing the distributionally-robust cost

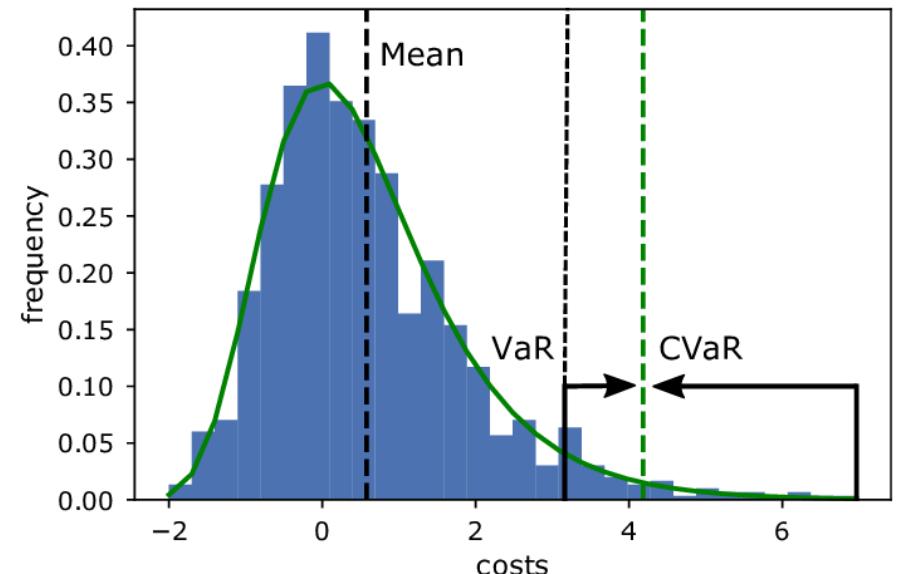
$$\mathcal{J} = \beta \sum_{k=0}^{N-1} \|\bar{u}_k\| + \max_{\mathbb{P} \in \mathcal{W}} \mathbb{E}_{\mathbb{P}} \left[\sum_{k=0}^{N-1} \tilde{\mathbf{x}}_k^\top Q_k \tilde{\mathbf{x}}_k + \tilde{\mathbf{u}}_k^\top R_k \tilde{\mathbf{u}}_k \right]$$

Why CVaR?

- Convex
- Penalizes worst-case violations (“black swan”)
- Implicitly satisfies VaR

Enforce the distributionally-robust CVaR (DR-CVaR) constraints

$$\sup_{\mathbb{P}_k \in \mathbb{S}_k} \text{CVaR}_{1-\gamma}^{\mathbb{P}_k} \left(\max_{j \in [J]} \alpha_j^\top \mathbf{x}_k + \beta_j \right) \leq 0$$



Problem Formulation

Consider augmented system

$$\mathbf{x} = \mathcal{A}\mathbf{x}_0 + \mathcal{B}\mathbf{u} + \mathcal{D}\mathbf{w},$$

with control law

$$\mathbf{u}_k = \mathbf{v}_k + K_k \tilde{\mathbf{x}}_k$$

$$\bar{\mathbf{x}} = \mathcal{A}\mathbf{x}_0 + \mathcal{B}\mathbf{v}$$

$$\tilde{\mathbf{x}} = (I + \mathcal{B}\mathcal{L})\mathcal{D}\mathbf{w}$$

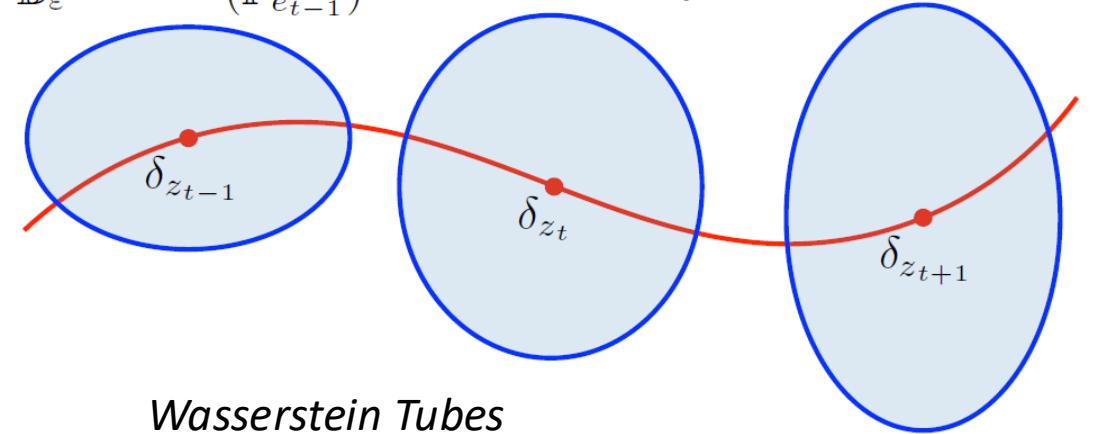
New decision variable
 $K = \mathcal{L}(I + \mathcal{B}\mathcal{L})^{-1}$

Distributional state uncertainty at k

$$\mathbb{S}_k = \delta_{\mathcal{A}\mathbf{x}_0 + \mathcal{B}\mathbf{v}} * \mathbb{B}_\varepsilon^{\|\cdot\|_2 \circ \tilde{\mathcal{L}}_k^\dagger} ((\tilde{\mathcal{L}}_k)_\# \hat{\mathbb{P}}_w)$$

$$(\delta_x * \mathbb{P})(\mathcal{B}) = \mathbb{P}(\mathcal{B} - x)$$

$$\mathbb{B}_\varepsilon^{\|\cdot\|_2 \circ \mathcal{D}_{t-2}^\dagger}(\hat{\mathbb{P}}_{e_{t-1}}) \quad \mathbb{B}_\varepsilon^{\|\cdot\|_2 \circ \mathcal{D}_{t-1}^\dagger}(\hat{\mathbb{P}}_{e_t}) \quad \mathbb{B}_\varepsilon^{\|\cdot\|_2 \circ \mathcal{D}_t^\dagger}(\hat{\mathbb{P}}_{e_{t+1}})$$



Wasserstein Tubes

Problem Formulation

Consider augmented system

$$\mathbf{x} = \mathcal{A}x_0 + \mathcal{B}\mathbf{u} + \mathcal{D}\mathbf{w},$$

with control law

$$\mathbf{u}_k = \mathbf{v}_k + K_k \tilde{\mathbf{x}}_k$$

$$\bar{\mathbf{x}} = \mathcal{A}x_0 + \mathcal{B}\mathbf{v}$$

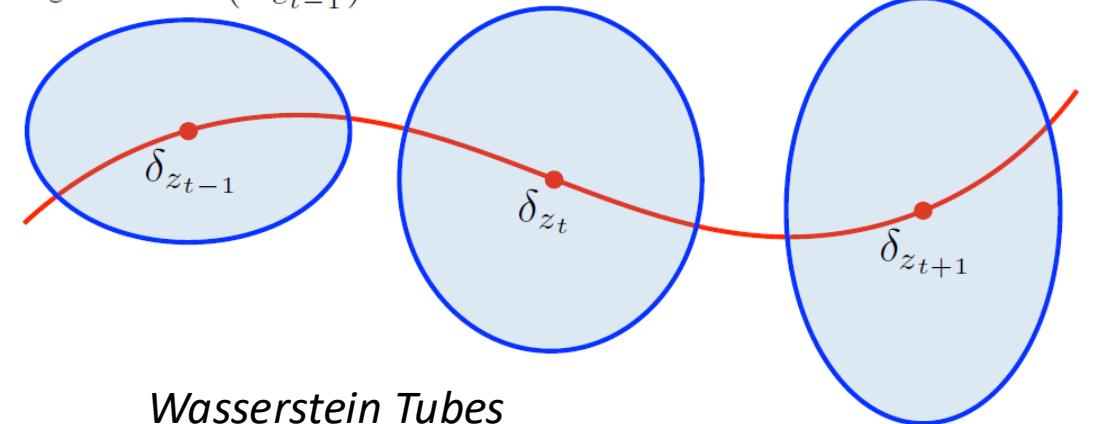
$$\tilde{\mathbf{x}} = (I + \mathcal{B}\mathcal{L})\mathcal{D}\mathbf{w}$$

Distributional state uncertainty at k

$$\mathbb{S}_k = \delta_{\mathcal{A}x_0 + \mathcal{B}\mathbf{v}} * \mathbb{B}_\varepsilon^{\|\cdot\|_2 \circ \tilde{\mathcal{L}}_k^\dagger} ((\tilde{\mathcal{L}}_k)_\# \hat{\mathbb{P}}_w)$$

$$\tilde{\mathcal{L}}_k \triangleq E_k(I + \mathcal{B}\mathcal{L})\mathcal{D}$$

$$\mathbb{B}_\varepsilon^{\|\cdot\|_2 \circ \mathcal{D}_{t-2}^\dagger}(\hat{\mathbb{P}}_{e_{t-1}}) \quad \mathbb{B}_\varepsilon^{\|\cdot\|_2 \circ \mathcal{D}_{t-1}^\dagger}(\hat{\mathbb{P}}_{e_t}) \quad \mathbb{B}_\varepsilon^{\|\cdot\|_2 \circ \mathcal{D}_t^\dagger}(\hat{\mathbb{P}}_{e_{t+1}})$$



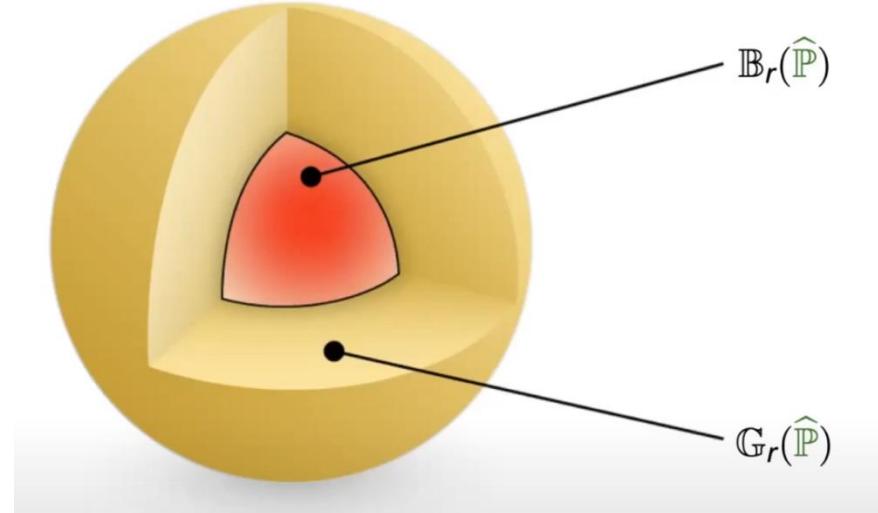
Key Result: Propagation of uncertainty through stochastic LTI systems (L. Aolaritei, N. Lanzetti, H. Chen, and F. Dörfler, 2023)

$$A_\# \mathbb{B}_\varepsilon^c(\mathbb{P}) = \mathbb{B}_\varepsilon^{c \circ A^\dagger}(A_\# \mathbb{P})$$

Gelbrich Ambiguity Set

$$\mathcal{G}_\varepsilon(\mu, \Sigma) = \{\mathbb{Q} \in \mathcal{S} : (\mathbb{E}_{\mathbb{Q}}[\xi], \text{Cov}_{\mathbb{Q}}[\xi]) \in \mathcal{U}_\varepsilon(\mu, \Sigma)\}$$

$$\mathcal{U}_\varepsilon(\hat{\mu}, \hat{\Sigma}) = \{(\mu, \Sigma) \in \mathbb{R}^d \times \mathbb{S}_+^d : \mathbb{G}((\mu, \Sigma), (\hat{\mu}, \hat{\Sigma})) \leq \varepsilon\}$$



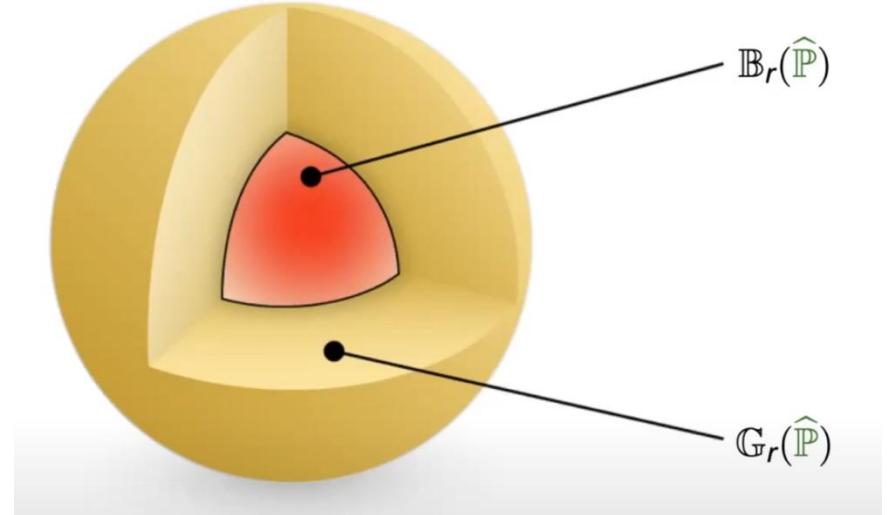
$$\mathbb{G}^2((\mu_1, \Sigma_1), (\mu_2, \Sigma_2)) \triangleq \|\mu_1 - \mu_2\|^2 + \text{tr} \left[\Sigma_1 + \Sigma_2 - 2(\Sigma_2^{\frac{1}{2}} \Sigma_1 \Sigma_2^{\frac{1}{2}})^{\frac{1}{2}} \right]$$

$$\sup_{\mathbb{P}_k \in \mathcal{G}_k} \text{CVaR}_{1-\gamma}^{\mathbb{P}_k} \left(\max_{j \in [J]} \alpha_j^\top x_k + \beta_j \right) \leq 0 \implies \sup_{\mathbb{P}_k \in \mathbb{S}_k} \text{CVaR}_{1-\gamma}^{\mathbb{P}_k} \left(\max_{j \in [J]} \alpha_j^\top x_k + \beta_j \right) \leq 0$$

Gelbrich Ambiguity Set

$$\mathcal{G}_\varepsilon(\mu, \Sigma) = \{\mathbb{Q} \in \mathcal{S} : (\mathbb{E}_{\mathbb{Q}}[\xi], \text{Cov}_{\mathbb{Q}}[\xi]) \in \mathcal{U}_\varepsilon(\mu, \Sigma)\}$$

$$\mathcal{U}_\varepsilon(\hat{\mu}, \hat{\Sigma}) = \{(\mu, \Sigma) \in \mathbb{R}^d \times \mathbb{S}_+^d : \mathbb{G}((\mu, \Sigma), (\hat{\mu}, \hat{\Sigma})) \leq \varepsilon\}$$



$$\mathbb{G}^2((\mu_1, \Sigma_1), (\mu_2, \Sigma_2)) \triangleq \|\mu_1 - \mu_2\|^2 + \text{tr} \left[\Sigma_1 + \Sigma_2 - 2(\Sigma_2^{\frac{1}{2}} \Sigma_1 \Sigma_2^{\frac{1}{2}})^{\frac{1}{2}} \right]$$

Satisfaction of Gelbrich DR-CVaR constraints implies satisfaction of Wasserstein DR-CVaR constraints

Chance Constraints

The **individual** DR-CVaR constraints

$$\sup_{\mathbb{P}_k \in \mathbb{S}_k} \text{CVaR}_{1-\gamma_{jk}}^{\mathbb{P}_k} (\alpha_j^\top x_k + \beta_j) \leq 0,$$

are satisfied if the following **convex** constraints are satisfied

$$\beta_j + \alpha_j^\top \hat{\mu}_k(v) + \tau_{jk} \sqrt{\alpha_j^\top \hat{\Sigma}_k(\tilde{L}_k) \alpha_j} + \tilde{\varepsilon}_k(\tilde{L}_k) \|\alpha_j\| \leq 0$$

where,

$$\hat{\Sigma}_k \triangleq \tilde{L}_k \Sigma_w \tilde{L}_k^\top \quad \tilde{\varepsilon}_k \triangleq \varepsilon (1 + \tau_{jk}^2)^{1/2} \sigma_{\max}^2(\tilde{L}_k) \quad \tau_{jk} \triangleq \sqrt{\frac{1 - \gamma_{jk}}{\gamma_{jk}}}$$

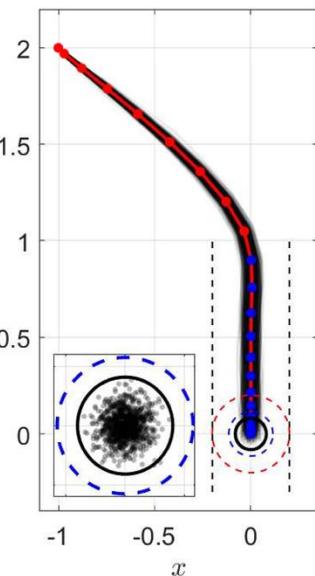
Chance Constraints

Similarly, the DR Objective and terminal ambiguity set constraint can also be formulated in terms of LMIs

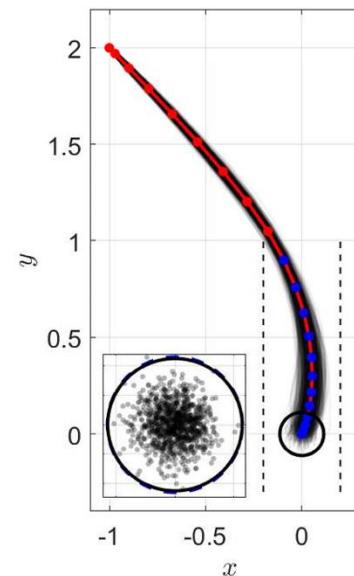
Using Schur complement we can further reformulate these constraints as tractable second-order cone constraints (SOCC) and linear matrix inequalities (LMIs)

Performance Comparison – 2D System

DR-DS

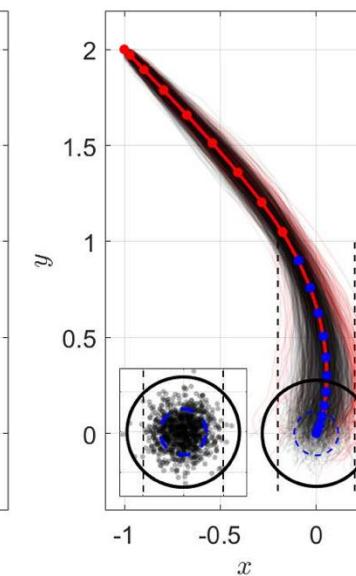


CS

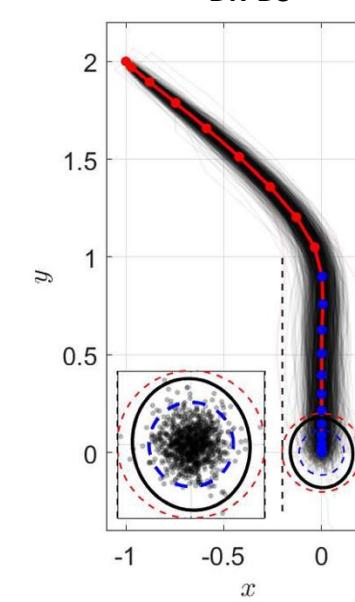


DR-DS

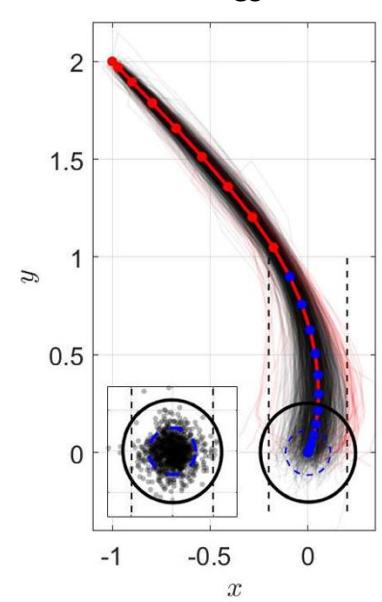
CS



DR-DS



CS



Nominal disturbance

$$\mathbb{P}_w = \mathcal{N}(0, I)$$

Extreme Gaussian disturbance

$$w_k \sim \mathcal{N}(0, \eta^2 I)$$

$$\mathbb{W}(\mathbb{P}_w, \hat{\mathbb{P}}_w) = \varepsilon$$

Non-Gaussian disturbance (3-DOF t -distribution)

Take-Aways

- Directly controlling **distributions of trajectories** leads to strict performance guarantees
- Uncertainty Synthesis
 - Control of system **with** uncertainty
 - Control **of** uncertainty
- Many, many, applications
 - Pinpoint landing
 - Swarms, Ensemble control
- For linear systems with Gaussian noise, theory well-developed
- **Have extended CS theory to**
 - Unknown system matrices
 - Unknown noise statistics

